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The concept of drug-likeness, an important characteristic for any compound in a screening library, is
nevertheless difficult to pin down. Based on our belief that this concept is implicit within the collective
experience of working chemists, we devised a data set to capture an intuitive human understanding of both
this characteristic and ease of synthesis, a second key characteristic. Five chemists assigned a pair of scores
to each of 3980 diverse compounds, with the component scores of each pair corresponding to drug-likeness
and ease of synthesis, respectively. Using this data set, we devised binary classifiers with an artificial neural
network and a support vector machine. These models were found to efficiently eliminate compounds that
are not drug-like and/or hard-to-synthesize derivatives, demonstrating the suitability of these models for
use as compound acquisition filters.

INTRODUCTION

In recent years, the development of combinatorial chem-
istry and high throughput screening techniques has resulted
in the ability to obtain hit compounds at ever-increasing
numbers. One of the primary areas of current research is
the speed with which we can evaluate and optimize the
potency and properties of these compounds or derivatives
thereof to find good lead compounds. At this point, if a
compound we focus on needs to be modified due to
undesirable properties or potential toxicity, or if we must
find similar compounds with other skeletons due to the
difficulty of synthesizing derivatives, the “hit to lead” process
requires significantly more time. This requires not only
compound diversity in a screening library for increasing the
rate of hits in any assay but also good ADME properties
(absorption, distribution, metabolism, and excretion) for each
compound, freedom from potential toxicity and the ease with
which derivatives can be synthesized. Since we cannot
measure these properties for each of the enormous numbers
of candidate compounds to be incorporated into our screening
library, these properties need to be predictedin silico.

Many types of computational methods have recently been
developed to predict ADME/Tox properties, ranging from
filters using simple descriptors such as Lipinski’s rule of
five,1 to statistical models such as QSPR (quantitative
structure-property relationship) and expert systems based
on accumulated experience.2-8 However, due to insufficient
experimental data, both the reliability and applicability of
these statistical models for novel compounds remain limited.9

The concept of “drug-likeness,” which should comprise all
ADME/Tox properties, has also been discussed and mod-
eled.10-17 Most reports that attempt to discriminate between
drug-like and non drug-like molecules use databases such

as the CMC (MDL Comprehensive Medical Chemistry),18

the MDDR (MDL Drug Data Report),19 and the WDI
(Derwent World Drug Index)20 to specify molecules con-
sidered drug-like, while the ACD (MDL Available Chemicals
Directory)21 is used to specify non drug-like molecules.
However, the WDI also clearly contains what we believe to
be non drug-like molecules, while the ACD contains some
drug-like molecules. Generally, keywords such as dye or
radiopaques are used to remove nondrug molecules from drug
databases. But such approaches are inadequate for the very
same reasons that prevent the accurate exclusion of all non
drug-like molecules from our screening library using char-
acteristically unfavorable substructures. Furthermore, since
many compounds listed in the ACD are small reactive agents,
models developed using these databases may proceed
primarily by differentiating reagents, making them less useful
for filtering out non drug-like molecules from a screening
library.

To resolve these difficulties, we created a data set in which
3980 diverse compounds were assigned scores by five
chemists, on the assumption that their collective experience
should capture the concept of drug-likeness. The scores were
assigned in pairs, assessing not only drug-likeness but also
ease of synthesis, another important trait of a good lead
compound. Using this data set, we constructed binary
classifiers with an artificial neural network (ANN) and a
support vector machine (SVM) and evaluated their efficiency
in filtering out compounds that are non drug-like and/or hard-
to-synthesize derivatives.

METHODS

Compound Selection and Scoring.The compounds to
be checked by chemists were selected as follows: First, about
5000 compounds were selected from our corporate database
by centroid clustering using a set of numerical descriptors
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(the second set described in the following “descriptors”
section). This hierarchical clustering method defines the
distance between two clusters as the squared Euclidean
distance between their means, so that the selected compounds
(cluster centers) tend to be separated by equal distances in
chemical space. This nature is suitable for collecting a very
diverse set of compounds, including many singular com-
pounds, despite the fact that drug-like compounds in general
compound libraries are densely distributed in the same
regions in chemical space. Next, compounds clearly having
reactive or toxic substructures, such as acyl halides, Michael
acceptors, nitroso, and so on were removed to avoid
rendering statistical models trivial. The remaining 3980
compounds were assigned scores by five chemists.

Each of the compounds was assigned to one of four
categories of drug-likeness and one of three categories of
ease of synthesis, with points assigned as follows:

Drug likeness
A: drug-like (3 points)
B: drug-like, if forced to categorize (2 points)
C: non drug-like, if forced to categorize (1 point)
D: non drug-like (0 points)

Ease of synthesis
A: easy (2 points)
B: possible (1 point)
C: hard (0 points)

Descriptors.We tested 6 types of descriptors/fingerprints
for explanatory variables, each of which was used for model
building independently. The first was an arbitrarily selected
set of 25 descriptors (Table 1) calculated using an MOE
software package22 based on two-dimensional molecular
structures. The second was PC (principal component) axes
1 through 9, which cover more than 90% of the information
provided by the 25 descriptors’ space. The third was a
fingerprint that indicates the presence or absence of certain
types of atom defined by Wildman and Crippen.23 We
excluded hydrogens and atom types that cannot be defined
without hydrogen. Unusual atoms (for example, Si, Cu) were

packed into 1 bit. Thus, the length of the fingerprint is 63
bits. We also counted how many atoms of each type were
present in a molecule and used this frequency as a fourth
explanatory variable. The fifth and the sixth explanatory
variables, respectively, were fingerprint and frequency values
(number of appearance of each atom/substructure type
correspond to each bit) for the MDL MACCS key (166
bits).24

Statistical Methods. If the scores are consistent among
the chemists, compounds could be sorted in terms of drug-
likeness or ease of synthesis according to the assigned scores,
and we could apply QSAR methods such as partial least
squares to build a model that could judge compounds’ drug-
likeness and ease of synthesis quantitatively. However, as
is shown later, this is not the case. Nevertheless, quite a
number of compounds obtained the consent of all five
chemist as being non drug-like or hard to synthesize. To
create a filter that eliminates unfavorable molecules, we only
need to distinguish these compounds from all others includ-
ing controversial one. For this purpose, we employed binary
classification machines, ANN and SVM.

A three-layer network with a back-propagation algorithm
was implemented through software developed in-house. The
number of neurons in the input layer was set equal to the
number of explanatory variables, while that of the output
layer was set to one. The number of hidden layer units was
varied to find the optimal value. All input values were scaled
to values between 0.1 and 0.9, and output values were
likewise appropriately rescaled. In the training phase, weight
differentials for all links were scaled so that the maximum
change did not exceed 0.02. The training step was truncated
at certain points to avoid over-learning. Every N-step,
weights of which absolute value exceed the threshold (set
to 0.01) were reduced, correspond to “forgetting,” which has
the effect of diminishing useless neurons and links, creating
a simpler network.25,26 The frequency of the forgetting
procedure was also optimized.

Table 1. Molecular Descriptors Calculated by MOE22

symbol description

petitjeanSC Petitjean graph shape coeffecient
weinerPath Wiener path number
weinerPol Wiener polarity number
balabanJ Balaban’s connectivity topological index
a_nN number of nitrogen atoms
a_nO number of oxygen atoms
a_aro number of aromatic atoms.
a_ICM atom information content (mean)
a_acc number of hydrogen bond acceptor atoms
a_don number of hydrogen bond donor atoms
b_rotR Fraction of rotatable bonds
chi0v atomic valence connectivity index (order 0)
chi1v_C carbon valence connectivity index (order 1)
KierA1 first alpha modified shape index
KierA2 second alpha modified shape index
KierA3 third alpha modified shape index
reactive indicator of the presence of reactive groups
weight molecular weight (including implicit hydrogens) with atomic weights
vdw_vol van der Waals volume calculated using a connection table approximation.
vsa_acid approximation to the sum of VDW surface areas of acidic atoms
vsa_base approximation to the sum of VDW surface areas of basic atoms
SlogP log of the octanol/water partition coefficient by Crippen
TPSA polar surface area
PEOE_RPC+ relative positive partial charge
PEOE_RPC- relative negative partial charge
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SVM is generally regarded to be one of the best learning
machines for pattern recognition,27 and has been used in
many areas, including drug design.28-30 Details of the specific
methods are described elsewhere.27,31 In brief, they involve
the optimization of Lagrangian multipliersRi with constraints
0 e Ri e C and∑Riyi ) 0 to yield a decision function

whereyi are input class labels that take-1 or 1,xi is a set
of descriptors, andK(xi, x) is a kernel function. The sign
function sgn(u) returns 1 whenu > 0, and-1 whenu e0.

We used the LIBSVM implementation developed by
Chang and Lin.32 Four types of kernel functions (linear,
polynomial, radial bases function, and sigmoid) were tested.
The upper bound parameter C and the inverse of kernel width
γ were varied to determine the most accurate model.

RESULTS AND DISCUSSIONS
Score Distribution. Figure 1 shows histograms of the

number of compounds assigned to each category by five

chemists. The number of compounds assigned scores for the
same category for drug-likeness and ease of synthesis reflects
good correlation between the paired values for all the
chemists except one, who classified many compounds as
possible to synthesize but non drug-like and assigned only
four compounds to the drug-like category (A). For both
properties, the categories to which the molecules were
assigned varied considerably among the chemists, which are
also shown in Tables 2 and 3.

Figure 2 shows the distribution of average scores assigned
by five chemists for drug-likeness (d) and ease of synthesis
(e). The number of compounds having the same combined
score for both properties was counted and expressed as the
radii of circles. The most common score, (d,e)) (0.4,0.2),
was assigned to 192 (4.8%) compounds. Since the centroid
clustering method tend to leave outliers as singletons, a lot
of “odd” compounds had been selected. Consequently, many
compounds were given relatively low scores, fulfilling our
purpose that we should collect as many unfavorable com-
pounds as possible. Two properties are correlated, which
might be partly because the chemists have scored these two
properties at one time. Nevertheless, some compounds were
assigned relatively high drug-like scores but low ease of
synthesis scores. The characteristics of these compounds will
be discussed further below.

Figure 1. Histograms of number of compounds assigned to each
category of drug-likeness (black) and ease of synthesis (gray) by
each of five chemists. For drug-likeness: A: drug-like; B: drug-
like if forced to categorize; C: non drug-like if forced to categorize;
D: non drug-like. For ease of synthesis: A: easy; B: possible; C:
hard.

y ) sgn (∑
SV

RiyiK(xi,x) - h) (1)

Table 2. Correlation Coefficient between Scores Assigned by Each
Chemist on Drug-Likeness

chemist A chemist B chemist C chemist D chemist E

chemist A 1.00 0.55 0.63 0.57 0.58
chemist B 1.00 0.51 0.50 0.50
chemist C 1.00 0.52 0.54
chemist D 1.00 0.54
chemist E 1.00

Table 3. Correlation Coefficient between Scores Assigned by Each
Chemist on Ease of Synthesis

chemist A chemist B chemist C chemist D chemist E

chemist A 1.00 0.50 0.40 0.40 0.56
chemist B 1.00 0.42 0.47 0.52
chemist C 1.00 0.40 0.48
chemist D 1.00 0.48
chemist E 1.00

Figure 2. Distribution of average scores assigned by five chemists
for drug-likeness and ease of synthesis. The number of compounds
having the same combined scores for both properties were counted
and expressed as the radii of circles.
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Since the objective is to create a filter that eliminates only
non drug-like molecules, compounds that all chemists
consider non drug-like should comprise a set of non drug-
like molecules. For this reason, we classified a compound
as non drug-like if all five chemists assigned it a C (non
drug-like, if forced to categorize) or D (non drug-like).
Assessments of ease of synthesis vary widely depending on
an individual chemist’s experience, but a compound may be
a lead even if only one chemist believed it offered the
potential for synthesis of derivatives. Once again, we
classified a compound as hard to synthesize if all five
chemists assigned it a C (hard to synthesize).

Based on these conditions, the number of non drug-like
compounds and the number of hard-to-synthesize compounds
are 1563 (39.3%) and 840 (21.1%), respectively. Proportion
of compounds classified to other categories is shown in
Figure 3. We selected 800 compounds at random from among
non drug-like molecules and another 800 from the other
categories to create a learning set for model building. With
respect to ease of synthesis, we selected 400 compounds from
among hard-to-synthesize molecules and another 400 from
the other categories to create a learning set. For both
properties, three different learning sets were selected to create
three different data sets. The classification models were
evaluated using the remaining compounds (test set).

Table 4 presents a summary of ANN results, showing
percentages of well-classified compounds averaged for three
data sets in case when the cut-off threshold for the output

score was set to 0.5. For each descriptor, the model rendering
the highest test set predictions is shown. Discrepancies in
predicted values among the three data sets were less than
5% except for four cases, in which we did not pursue the
optimal condition due to low accuracy. Changing the
frequency of forgetting had relatively little effect on accuracy.
Table 5 presents a summary of SVM results. Discrepancies
in predicted values in three data sets were less than 3%,
except for three cases. The value of C, the upper bound
parameter, had relatively little effect on accuracy, provided
it remained in the range vicinity of∼100. However, if we
reduce it by a factor of 10, accuracy tends to decline; if we
increase it by a factor of 10, SVM tends to overlearn the
learning data set and renders poor accuracy for the test data
set. Hereafter, we analyze and compare each of the best
models devised using ANN and SVM.

Drug-Likeness.Figure 4a shows the distributions of ANN
scores for both non drug-like compounds (1563) and all
others (2417) when the MACCS fingerprint was used as
explanatory variables. Based on this distribution, the relation-
ship between sensitivity (true positive rate) and specificity
(true negative rate), known as the ROC (receiver operating
characteristic) curve, is plotted (Figure 4b). Since the purpose
of this study is to devise a filter that eliminates only non
drug-like molecules, it is preferable to leave a certain number
of “bad” compounds in the library than to risk filtering out
any “good” compounds. Thus, we placed greater emphasis
on specificity than sensitivity, setting the cut-off threshold
to 0.4. With this condition, the predictive accuracies of the
learning set and test set were 80.1% and 79.1%, respectively.

The overall accuracy of SVM predictions exceeded those
based on ANN. Differences between learning set accuracy
and test set accuracy were greater than with ANN. This was
observed whenever we considered the case of optimal test
set prediction. The variances between three data sets are
much lower than with ANN, indicating the robustness of
the data sets. We took the case where MACCS frequency
was used as explanatory variables and evaluated its efficiency
as a filter to eliminate non drug-like molecules.

Figure 5a shows the ratios of compounds eliminated by
classification machines functioning as filters against the
average drug-like scores assigned by five chemists. Since

Figure 3. Proportion of compounds classified based on the assigned
categories. A or B: placed into categories A or B including all B;
B or C: placed into categories B or C except all B and all C; C:
placed by all chemists into category C; C or D: placed into
categories C or D, including all C; divergent: placed into more
than three categories.

Table 4. Percentage of Well-Classified Compounds with ANN
Models Averaged for Three Data Sets

descriptor
learning

step
# hidden

unit

recon-
struction

step
learning

set
test
set

Drug Likeness
MACCS 300 4 80 85.6 76.5
MACCS frequency 5000 4 80 78.0 75.8
Crippen 300 11 80 81.0 73.0
Crippen frequency 3000 12 80 73.4 73.1
MOE descriptors 10000 13 80 76.6 60.8
MOE PC9 10000 10 80 73.0 73.4

Ease of Synthesis
MACCS 100 3 80 84.5 78.2
MACCS frequency 3000 5 100 90.4 83.3
Crippen 100 12 80 81.2 75.5
Crippen frequency 3000 6 200 84.3 80.3
MOE descriptors 1000 7 80 84.2 82.0
MOE PC9 5000 40 80 81.3 77.6

Table 5. Percentage of Well-classified Compounds with SVM
Models Averaged for Three Data Sets

descriptor C γ
Kernel

function
learning

set
test
set

Drug Likeness
MACCS 1 0.04 rbfa 90.9 76.5
MACCS frequency 0.1 0.01 polynomial(3,1)b 88.3 78.5
Crippen 1 0.1 rbf 84.0 74.6
Crippen frequency 1 0.02 rbf 88.5 74.1
MOE descriptors 1 0.1 rbf 84.9 75.0
MOE PC9 1 0.2 rbf 78.4 73.1

Ease of Synthesis
MACCS 1 0.02 rbf 88.3 79.6
MACCS frequency 3 0.003 rbf 92.3 81.7
Crippen 1 0.1 rbf 87.9 77.1
Crippen frequency 1 0.05 polynomial (2,10) 96.0 78.2
MOE descriptors 1 0.04 rbf 85.5 79.9
MOE PC9 1 0.1 rbf 92.3 78.9

a rbf: radial bases functionK(xi, x) ) exp[-γ|xi - x|2]. b K(xi, x) )
(γxix + 1)3.
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we shifted the cut-off threshold for ANN to eliminate fewer
compounds, the ratio of filtered compounds with the ANN
model is slightly less than the SVM model over all score
ranges, but only low score compounds are effectively
eliminated by both models. Figure 5b also gives the ratios
of compounds eliminated by the same drug-like filters against
the average ease-of-synthesis scores. Only three compounds
were assigned A (2 points) by all five chemists for ease of
synthesis, one of which was eliminated by the drug-like filter

developed by SVM, resulting in a high ratio of elimination
at a total score of 10. With this exception, the graph shows
that the drug-like filter also effectively filters out hard-to-
synthesize compounds, demonstrating that most non drug-
like compounds are hard-to-synthesize.

Figure 6 presents examples of filtered compounds with
the ANN model, while Figure 7 presents compounds passed
with the same filter. One of the disadvantages of these
statistical methods is our inability to isolate the rationales
for such determinations. However, examining structures of
well- and misclassified compounds revealed certain common
structural features. For example, chemists tend to regard
compounds that contain atoms with three ring bonds as non
drug-like. Of 348 compounds having such atoms among the
original 3980 compounds, 195 compounds (56%) were
deemed non drug-like by all five chemists, while only one

Figure 4. (a) Distributions of ANN scores for both non drug-like
compounds and all others normalized by number of compounds in
each class, when MACCS fingerprint was used as an explanatory
variable. The vertical dotted line at 0.4 indicates the cut-off
threshold. (b) ROC curve for the ANN model. The cross mark
indicates the point where the cut-off threshold is set to 0.4.

Figure 5. (a) The ratios of compounds eliminated by filters
developed by ANN (dashed line) and SVM (solid line) using drug-
like scores against the average drug-like score assigned by five
chemists. (b) The ratios of compounds eliminated by filters
developed by ANN (dashed line) and SVM (solid line) using drug-
like scores against the average ease of synthesis score assigned by
five chemists.

Figure 6. Examples of filtered (eliminated) compounds by the
ANN model, with average drug-like score (d) and average ease of
synthesis score (e) assigned by five chemists.

Figure 7. Examples of passed compounds (compounds retained
in the database) by the ANN model, with the average drug-like
scores (d) and average ease of synthesis scores (e) assigned by five
chemists.
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compound was deemed drug-like. This may be why this
classification machine filtered out compounds with relatively
good scores, as shown in Figure 6.

Ease of Synthesis.Figure 8a shows distributions of ANN
scores for both hard-to-synthesize compounds (840) and all
others (3140). Figure 8b shows the ROC curve plotted from
this distribution. Again, since the purpose of this work is to
devise a filter that eliminates only compounds that are clearly

hard to synthesize, we set the cut-off threshold to 0.4. Given
this condition, the overall predictive accuracy of the learning
set and test set were 84.9% and 87.6%, respectively. The
SVM-based model accounting for MACCS frequency also
yielded the most accurate model.

Figure 9a shows the ratios of compounds eliminated by
classification machines functioning as filters against the
average ease-of-synthesis scores assigned by five chemists.
The graph shows higher efficiency than with the drug-like
filter, partly because this model distinguishes between
compounds of score 0 and all others, while the drug-like
filter tries to discriminate between non drug-like compounds
assigned the maximum score of 5 and other compounds
assigned the minimum score of 2.

Figure 9b presents the ratios of compounds eliminated by
ease-of-synthesis filters against the average drug-likeness
scores, showing that about 20% of the compounds whose

Figure 8. (a) Distributions of ANN scores for both hard-to-
synthesize compounds and all normalized by number of compounds
in each class, when MACCS frequency was used as an explanatory
variable. The vertical dotted line at 0.4 indicates the cut-off
threshold. (b) ROC curve for the ANN model. The cross mark
indicates the point where the cut-off threshold is set to 0.4.

Figure 9. (a) The ratios of compounds eliminated by filters
developed by ANN (dashed line) and SVM (solid line) using ease
of synthesis scores against average ease of synthesis scores assigned
by five chemists. (b) The ratios of compounds eliminated by filters
developed by ANN (dashed line) and SVM (solid line) using ease
of synthesis scores against average drug-like scores assigned by
five chemists.

Figure 10. Examples of filtered compounds (compounds elimi-
nated from the database) by the ANN model, with average drug-
like scores (d) and average ease of synthesis scores (e) assigned
by five chemists.

Figure 11. Examples of passed compounds (compounds retained
in the database) by the ANN model, with average drug-like scores
(d) and average ease of synthesis scores (e) assigned by five
chemists.
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total drug-like scores fell in the middle were removed. This
offer a sharp contrast to the case in which drug-like filters
quite effectively eliminate hard-to-synthesize molecules. One
of the reasons for this is that there are some compounds that
were given relatively high drug-like scores but low ease of
synthesis scores (Figure 2). Representative examples of such
compounds are sugars, nucleic acids, and steroids, which are
regarded to be hard-to-synthesize by most of the chemists,
but whose drug-likeness is controversial. Examples of filtered
compounds with the ANN model are presented in Figure
10, while passed compounds with the same filter are
presented in Figure 11.

CONCLUSION

Five chemists assigned a pair of scores to each of 3980
diverse compounds, with the component scores of each pair
corresponding to drug-likeness and ease of synthesis, re-
spectively. Using these data, we developed classification
models that selectively filter out non drug-like compounds
and hard-to-synthesize compounds. We believe these models
can serve as suitable compound acquisition filters.
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