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The performance of two important 2D and 3D molecular descriptors for rational design to maximize the
structural diversity of databases is investigated in this publication. Those methods are based either on a 2D
description using a binary fingerprint, which accounts for the absence or presence of molecular fragments,
or a 3D description based on the geometry of pharmacophoric features encoded in a fingerprint
(pharmacophoric definition triplets, PDTs). Both descriptors in combination with maximum dissimilarity
selections, complete linkage hierarchical cluster analysis, or sequential dissimilarity selections were compared
to random subsets as reference. This comparison is based on their ability to cover representative biological
classes from parent databases (coVerage analysis) and the degree of separation between active and inactive
compounds for a biological target from hierarchical clustering (cluster separation analysis). While the
similarity coefficients (Tanimoto, cosine) show only a minor influence, the number of conformations to
generate the 3D PDT fingerprint lead to remarkably different results. PDT fingerprints derived from a lower
number of conformers perform significantly better, but they are not comparable to a 2D fingerprint-based
design. When 2D and 3D descriptors are combined with weighting factors> 0.5 for 2D fingerprints, a
significant improvement of coverage and cluster separation results is observed for a small number of PDT
conformers and medium sized subsets. Some combined descriptors outperform 2D fingerprints, but not for
all subset populations. Applying sequential dissimilarity selection to PDT descriptors reveals that its
performance is dependent on the initial ordering of compounds, while presorting according to 2D fingerprint
diversity does not improve results. Finally the relationship between biological activity and similarity was
investigated, showing that PDTs quantify smaller structural differences due to the large number of bits in
the fingerprint.

1. INTRODUCTION

High-throughput screening and combinatorial chemistry
are nowadays changing research in the chemical and
pharmaceutical industry. For successful, but efficient, dis-
covery of lead compounds, the use of rational design
strategies for representative compound subsets is indispen-
sable.1 Even with the advent of miniaturization strategies,
appropriate compound subsets are important to speed up lead
finding by handling more assays in a given time. Several
methods for diversity selection have been proposed.2 In
general designed subsets were shown to perform significantly
better than randomly picked compounds in retrospective
analyses.3 In particular, 2D fingerprints are appropriate for
designing subsets representing all biological properties of
parent databases.4 They were shown to perform better than
many other common 2D or 3D descriptors.5

The concept of molecular diversity6,7 is based on the
similar property principle,8 which states that structurally
similar molecules should reveal similar physicochemical and
biological properties. Thus it is possible to predict target
properties for a molecule using known values for similar

compounds. This should also allow one to select representa-
tive compounds covering the properties of the parent database
or combinatorial library.9 One interesting question is, whether
the knowledge of the molecular 3D structure or the geometry
of key features offers advantages for design.10 Although 3D
molecular structures are often important for explaining
structure-activity relationships, most classifications into
similar and dissimilar ones are still based on a 2D description.
Previous investigations5 of 3D descriptors included align-
ment-independent WHIM indices,11 CoMFA steric fields,12,13

flexible UNITY 3D fingerprints, and 3D spatial autocorre-
lation functions.14,15 Although significant enhancements to
CoMFA steric fields were introduced,16 those still require a
common framework for superposition. However, none of
these descriptors led to better results than 2D fingerprints in
terms of covering biological properties of a database by
smaller subsets.

Publications by Mason et al.,17,18 Brown and Martin et
al.,19,20 and Davies21 have highlighted interesting properties
of pharmacophoric triplets (PDTs) as novel 3D descriptors
for selecting representative subsets. Today commercial
software products are available22,23for pharmacophore-based
library design. Successful applications of enhanced four-point
pharmacophore descriptors have also been reported.24 Those
properties and the availability of three-point pharmacophore
descriptors prompted us for a comparative study to group
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active and inactive compounds and select representative
subsets for biological screening using PDTs and 2D finger-
prints as reference.

The term “pharmacophore definition triplets” refers to a
set of three pharmacophoric features, like acceptor atom/
acceptor atom/hydrophobic point. Each possible triangle
geometry for such a triplet disregarding its specification order
is encoded in a fingerprint. Individual bits are referring to
different triangle geometries formed between pharmacophoric
points.

These descriptors were evaluated using maximum dis-
similarity selection and complete linkage hierarchical cluster-
ing and compared to random subsets. To monitor the
descriptors’ performance, two approaches were used: (a) a
coVerage analysisinvestigates the sampling of biological
classes from parent databases in smaller subsets; (b) acluster
separation analysisis used to assess the degree of separation
between active and inactive compounds for a particular
biological class from hierarchical clustering. Furthermore the
influence of the number of conformers and the similarity
coefficient (Tanimoto25 or cosine coefficients as dimension-
less metrics; see ref 26 for a comparison) on the coverage
and cluster separation results is investigated in detail. Finally
it is evaluated, whether the combination of 2D fingerprints
and PDTs into a single descriptor with different weighting
factors can improve subset selection or clustering perfor-
mance.

Compound selections and classifications were done using
reference databases previously used to compare rational and
random approaches:3 a public database containing 1283
compounds active in 55 biological classes with several
diverse templates and a database encompassing 334 com-
pounds from 11 different structure-activity series. For these,
database cross-checking between different classes was done
and activities were determined in a single laboratory. These
data are obtained in defined assay systems and not compiled
from literature, which might be a potential source of
uncertainty for the first database.

The choice of 2D fingerprints as reference is based on
their comparison to other 2D or 3D descriptors.4,5 It was
found that compound subsets without any compound closer
than 0.85 to another one (Tanimoto coefficient) are able to
span the biological property space of a database. Each
biological class is still populated by one or more bioactive
compounds. Any removal of redundant structures should
result in a subset spanning the same physicochemical
diversity space and retaining the biological information from
the parent database.27

2. METHODS

All calculations and database manipulations were done
using the programs SYBYL28 and UNITY.29 In general,
chemical structures are represented in the SYBYL line
notation (SLN).30 Automation of design and analysis pro-
cedures was done using the SYBYL programming language
(SPL), UNIX shell scripts, and PERL scripts.

2.1. Two-Dimensional Fingerprints. Two-dimensional
fingerprints, computed using UNITY,29 contain information
about the presence of molecular fragments in a binary format.
For each structure, a list of all possible fragments of a
particular length is generated and converted into a bitstring.

Due to the large number of existing fragments in a database,
it is not possible to assign one individual bit to only a single
fragment. Hence, the following procedure is used: the SLN
for each fragment generated is mapped to a unique integer
in the range of 0-231 using a cyclic redundancy check
algorithm.31 Each integer is then projected into this size-
limited bitstring by a procedure known as “hashing”, setting
one or multiple bits to “1”.32 For each feature, multiple
occurrences set more neighboring bits to “1”. This way of
storing molecular information allows one to quantify the
similarity of two molecules based on similarity coefficients,
like the Tanimoto or cosine coefficients.25,26Both coefficients
are based on the number of bit positions set in both individual
bitstrings for both molecules normalized by the number of
bits set in common, while they differ in the applied scaling.
The Tanimoto coefficient is widely used in database analysis,
as it has certain properties making the work with larger data
sets very efficient. Here we used both similarity coefficients
for comparison. A similarity coefficient of 0 means that both
structures have no “1” bits in common and there is no
intersection between both sets of fragments. In contrast, a
value of 1 indicates that both fingerprints are identical.

2.2. Pharmacophore Definition Triplets.Pharmacophore
definition triplets (PDTs) as 3D descriptors offer an alterna-
tive way to quantify molecular diversity by encoding spatial
relationships within pharmacophoric pattern in molecules.
For this study the Sybyl 6.3 implementation was used. The
2D fingerprint descriptor is modified such that each indi-
vidual bit in a binary fingerprint now refers to a geometry
in pharmacophoric space. The setting of an individual bit to
1 indicates the presence of a specific triangle geometry: a
set of three pharmacophoric points separated by three
particular distances. In general, five pharmacophoric feature
definitions were used: acceptor atoms, acceptor sites, donor
atoms, donor sites, and hydrophobic centers. While donor
and acceptor atoms are part of the molecule, site points refer
to interaction points located on a “virtual” receptor, defined
by geometrical criteria.33 The pharmacophoric feature defini-
tions reflect biologically relevant physicochemical conditions
and accommodate tautomeric potential. A set of 27 distance
bins is specified from 2.5 to 15 Å in steps of 0.5 Å, which
leads in total to a PDT fingerprint of 307.020 bits encoding
triangle geometries. A single PDT fingerprint per molecule
is stored for maximum dissimilarity-based selections and
hierarchical cluster analysis, while for sequential selection,
a cumulative fingerprint is used as union for all molecules
in the subset.

Any PDT fingerprint is computed for conformational
ensembles to account for molecular flexibility. Starting
geometries were generated by 3D conversion using CON-
CORD.34 Individual conformers were generated by random
setting of rotatable dihedral angles, followed by refinement
using thedirected tweakalgorithm35 to release from steric
overlap, bumps, and strain. This fast conformational analysis
allows for processing of larger databases. Pharmacophore
geometries from acceptable conformers were combined into
a union fingerprint. The effect of the number of conformers
on the sampling performance was also investigated. Hence,
PDT descriptors were generated using different numbers of
conformers for every molecule, namely, 10, 20, 50, 100, 200,
500, and 1000, respectively. If for rigid molecules the
predefined number of conformers could not be generated,
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the fingerprint was computed from the maximum possible
number of conformations.

Furthermore it was assessed, whether a fusion of 2D
fingerprints and PDTs into a single descriptor can improve
the subset selection or clustering performance. Different
weighting factors were applied to 2D fingerprints and PDTs
before computing the average similarity coefficients. Those
weighting factors were changed from 0.2/0.8 for 2D finger-
prints/PDTs to 0.8/0.2 in increments of 0.1. Here 10 or 100
conformers were used to generate PDT fingerprints.

2.3. Compound Selection and Analysis.Compound
selections for 2D fingerprints and 3D pharmacophoric triplets
were done using the maximum dissimilarity algorithm36-39

and Tanimoto or cosine coefficients, respectively. A recent
comparative study highlights the properties of several
algorithms for dissimilarity-based selections.40 In the present
implementation new compounds are successively selected
such that they are maximally dissimilar from the previously
selected subset. This process is terminated either when a
maximum number of compounds is chosen or when no
further molecule can be selected without being too similar
to one of the already selected members. After randomly
selecting a seed, every new compound is chosen to be
maximally dissimilar from all previous members. The first
three compounds are rejected after the fourth selection, but
they are allowed for later picking. The mean similarity
coefficient is computed as average from coefficients for every
structure to its nearest neighbor. For all PDT and combined
2D/3D descriptor-based dissimilarity selections, the same
seed compound as that for 2D fingerprints is utilized. The
success of maximum dissimilarity selections is evaluated by
the coverage of biological classes from the original database
in smaller subsets (coVerage analysis).

Hierarchical cluster analysis41,42was used as an alternative
method for molecular descriptor assessment and validation,
as it offers more specific control by assigning every molecule
to a group of compounds. Hierarchical clustering does not
require any assumption about a final number of clusters to
be generated; small clusters with very similar elements are
nested within larger clusters containing more dissimilar
structures. There is no a priori guideline which method is
appropriate for a particular data set, while some techniques
perform better for grouping similar compounds.19 Here
complete linkage clustering was applied using the Tanimoto
or cosine coefficient; i.e., intercluster distances are computed
using the most distant pair of elements in both clusters,
leading to compact clusters and a lower number of singletons.

For analysis it was evaluated whether compounds of
similar chemical structure and biological activity are grouped
(cluster separation analysis). The degree of separation
between actives and inactives for a particular target was
determined from various cluster levels, generated from the
final dendrograms. For this cluster separation analysis,5,19

an actiVe clusteris defined as a cluster containing at least
one active compound for a particular target. This allows one
to define anactiVe cluster subsetas the total number of
structures in all active clusters for one target (combined
actives and inactives). Then the proportionp of active
structures only in this active cluster subset is computed and
compared to the proportion of active structures in the entire
database. If 10 active clusters are found with 80 active and
20 inactive compounds, the proportionp is 80/100) 0.8

for this target. If the entire database contains 1000 com-
pounds, then the proportion of active structures in the entire
database is 80/1000) 0.08. Any increase inp compared to
that number indicates a trend to separate active and inactive
compounds. The proportionp was averaged over all biologi-
cal classes and plotted versus the increasing number of
clusters at different levels of the complete dendrogram.
Singletons were excluded from the analysis, as their propor-
tion of 1.0 skew the results.19

Alternatively a sequential selection for PDTs was inves-
tigated. This is a computationally efficient procedure based
on a composite PDT database fingerprint. Here a new
structure is selected, if its PDT fingerprint is more diverse
than a given Tanimoto coefficient threshold to the composite
fingerprint of the already selected hitlist. Resulting subsets
were evaluated using the coverage analysis.

Probability calculations were used to compare random
selections to the rational approach, as earlier described.3

Assuming a particular statistical distribution, it is possible
to compute the probabilityp to find n1 hits by n selections
in a database with a total ofN compounds andN1 hits for a
particular target. This allows one to evaluate how many target
classes are covered by a purely random selection ofn
compounds.

3. RESULTS AND DISCUSSION

3.1. Characteristics of the Databases.Two databases
from diverse sources with different characteristics were
investigated. The first database IC93 represents a collection
of 1283 biologically active molecules as a subset from the
IndexChemicus1993 database.43 This database was divided
into 55 biological classes according to the biological indica-
tion area, specified as a string in the original database.
Compounds with similar biological activities were grouped
into the same class for all subsequent analyses.3,5 The second
database BAYER contains 334 compounds; it was retro-
spectively generated on the basis of quantitative structure-
activity series for 11 diverse biological assays. One important
criterium in the selection of these quantitative structure-
activity relationship (QSAR) series was the different size
and similarity of individual series. Some physicochemical
and structural properties of both databases are summarized
in ref 3. Inactive compounds were not added, as every
compound is assumed to be inactive in all but one biological
assay, thus providing negative information to evaluate
selection performances of diversity descriptors.

3.2. Maximum Dissimilarity Based Selections of Diverse
Subsets.For the IC93 database, various subsets with 60-
500 members (in steps of 20) were selected using 2D
fingerprints or 3D PDTs (100 conformers) and Tanimoto or
cosine coefficients, respectively. For analysis the coverage
of biological classes is plotted in Figure 1 versus subset
population; numerical results are given in Table 1. The
coverage of biological classes is reported in percent on the
basis of 55 classes for the IC93 database. Theoretical val-
ues3 for random selections are also listed in Table 1
(Random•theo).

Two-dimensional fingerprint-based selections perform
significantly better than 3D PDTs, while there is an almost
similar behavior for both similarity coefficients. The per-
formance of 3D PDTs is significantly better than random
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selections only for smaller subsets (60-200, Table 1), while
for larger ones (280-480) a lower performance than expected
for a random approach is observed. When focusing on small
subsets with 60 members, the 2D fingerprint-based method
samples 62/58% (Tanimoto/cosine) of all biological classes,
while a 45% coverage is expected for a random selection.
The PDT performance of 47/49% reveals a better perfor-
mance than random. Selecting more than 440 structures using
2D fingerprints covers all biological classes, while only 88%
are covered using a random subset. Remarkably, for a PDT-
based selection only 81/84% of all classes are covered, thus
showing the slightly lower performance of this descriptor
compared to a random approach.

In Table 2 the maximum pairwise Tanimoto or cosine
coefficients for maximum dissimilarity selections in the IC93
database using 2D fingerprints or 3D PDTs are summarized.
Here one of the main differences between both descriptors

is obvious: While the maximum similarity coefficient for
2D fingerprints in a subset with 60 diverse compounds is
0.34/0.52 (Tanimoto/cosine coefficients), these maximum
similarities are reduced to 0.07/0.17 for PDTs, respectively.
In addition the maximum similarity for 500 compounds is
0.87/0.93 for 2D fingerprints, while for PDTs the highest
similarities are 0.49/0.66. A PDT fingerprint encodes more
subtle structural information than a conventional 2D finger-
print using a much larger number of bits. While this allows

Table 1. Random versus Maximum Dissimilarity Selection Using 2D Fingerprints or PDTs for Designing Representative Subsets of the IC93
Database (1283 Compounds; 55 Target Classes)a

NComp FP•Tanimoto FP•Cosine PDT•Tanimoto PDT•Cosine Random•theo

60 61.82 58.18 47.27 49.09 45.47
80 65.45 72.73 54.55 56.36 51.93

100 76.36 76.36 60.00 58.18 57.05
120 81.82 81.82 61.82 61.82 61.29
140 83.64 87.27 67.27 63.64 64.78
160 85.45 87.27 69.09 69.09 67.73
180 85.45 87.27 72.73 69.09 70.36
200 89.09 89.09 74.55 72.73 72.73
220 89.09 89.09 74.55 74.55 74.73
240 89.09 89.09 74.55 74.55 76.60
260 89.09 89.09 74.55 74.55 78.13
280 89.09 89.09 76.36 78.18 79.71
300 90.91 89.09 76.36 80.00 81.04
320 96.36 96.36 78.18 80.00 82.27
340 96.36 96.36 80.00 80.00 83.40
360 96.36 96.36 81.82 80.00 84.38
380 98.18 98.18 81.82 80.00 85.44
400 98.18 98.18 81.82 81.82 86.25
420 98.18 98.18 81.82 81.82 87.15
440 100.00 98.18 81.82 83.64 87.85
460 100.00 100.00 83.64 83.64 88.53
480 100.00 100.00 87.27 85.45 89.20
500 100.00 100.00 87.27 85.45

a The percentage of biological classes in IC93 covered by a subset is reported: NComp, number of compounds in a subset; FP•Tanimoto, 2D
fingerprints and the Tanimoto coefficient; FP•Cosine, 2D fingerprints and the cosine coefficient; PDT•Tanimoto, 3D PDTs (100 conformers) and
the Tanimoto coefficient; PDT•Cosine, 3D PDTs (100 conformers) and the cosine coefficient; Random•theo, theoretical random selection.

Figure 1. Maximum dissimilarity selection using 2D fingerprints
and 3D PDTs for designing representative subsets of the IC93
database. The percent biological classes covered are plotted versus
subset sizes (coVerage analysis).

Table 2. Maximum Pairwise Similarity Coefficients (Tanimoto or
Cosine) for Maximum Dissimilarity Selections in the IC93 Database
Using 2D Fingerprints or 3D PDTsa

NComp FP•Tanimoto FP•Cosine PDT•Tanimoto PDT•Cosine

60 0.34 0.52 0.07 0.17
80 0.39 0.55 0.10 0.23

100 0.43 0.61 0.12 0.27
120 0.47 0.64 0.16 0.31
140 0.50 0.68 0.19 0.34
160 0.55 0.71 0.21 0.37
180 0.59 0.75 0.23 0.40
200 0.64 0.78 0.25 0.43
220 0.66 0.80 0.27 0.45
240 0.68 0.82 0.29 0.47
260 0.72 0.84 0.31 0.49
280 0.73 0.85 0.33 0.51
300 0.75 0.86 0.34 0.53
320 0.76 0.87 0.36 0.54
340 0.78 0.88 0.38 0.56
360 0.80 0.89 0.39 0.57
380 0.81 0.89 0.41 0.58
400 0.82 0.90 0.41 0.60
420 0.83 0.91 0.44 0.62
440 0.84 0.92 0.44 0.62
460 0.85 0.92 0.46 0.64
480 0.86 0.93 0.47 0.65
500 0.87 0.93 0.49 0.66

a No pair of compounds in a subset is more similar than the maximum
pairwise similarity coefficient. See Table 1 for further details.
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one to detect very small differences, there are still too many
dissimilar triangle geometries populated even in two very
similar molecules. Thus this descriptor does not use the full
dynamic range for the pairwise similarity coefficients
(between 0 and 1). Most pairwise similarities fall in a narrow
range, which might cause a less clear similarity ranking.

Similar coverage performances are observed when altering
the number of conformers for PDT descriptors. Figure 2
summarizes the conformational dependence of 3D PDT
fingerprints for compound selections using the maximum
dissimilarity algorithm, while numerical results are reported
in Table 3. None of these PDT descriptors shows coverage
similar to 2D fingerprints. Interestingly, for both similarity
coefficients a lower number of conformers (10 or 20)
performs better for smaller subset sizes (100-320). For very
small subsets and the Tanimoto coefficient (60, 80) or large
subsets (>340) with both similarity coefficients, all PDT
descriptors behave almost similarly with a slight preference
for a lower number of conformers. In general, PDT derived
descriptors with a lower number of conformations and
smaller subset sizes (<340) perform significantly better than
a random selection, while this difference disappears for larger
subsets and all PDT descriptors and similarity coefficients.

Thus extensive conformational sampling to account for
molecular flexibility might introduce additional noise into
PDT fingerprints, especially for a higher number of conform-
ers. More pharmacophore triangle geometries in a bitstring
are set by such a larger number of acceptable conformations.
In contrast, triangle geometries for single low-energy con-
formers also reveal low performances as reported earlier.19,20

This opens into the general conformational flexibility
problem associated with 3D descriptors. Without detailed
studies to investigate the influence of additional conforma-
tional analysis protocols and parameters on coverage and
cluster separation results, it cannot be decided whether there

Table 3. Increasing Number of Conformers for Subset Selection Using 3D PDTs and the Maximum Dissimilarity Method for the IC93
Databasea

NComp
PDT-
10t

PDT-
10c

PDT-
20t

PDT-
20c

PDT-
50t

PDT-
50c

PDT-
100t

PDT-
100c

PDT-
200t

PDT-
200c

PDT-
500t

PDT-
500c

PDT-
1000t

PDT-
1000c

60 47.27 52.73 45.45 43.64 43.64 41.82 47.27 49.09 47.27 45.45 41.82 47.27 43.64 47.27
80 58.18 58.18 56.36 50.91 56.36 54.55 54.55 56.36 56.36 50.91 52.73 52.73 56.36 52.73

100 65.45 67.27 60.00 60.00 60.00 60.00 60.00 58.18 61.82 58.18 56.36 56.36 60.00 56.36
120 69.09 72.73 69.09 69.09 61.82 65.45 61.82 61.82 63.64 61.82 60.00 58.18 63.64 60.00
140 69.09 74.55 70.91 70.91 65.45 67.27 67.27 63.64 65.45 65.45 63.64 63.64 65.45 65.45
160 76.36 76.36 74.55 74.55 69.09 69.09 69.09 69.09 67.27 67.27 65.45 63.64 67.27 65.45
180 78.18 76.36 74.55 74.55 72.73 69.09 72.73 69.09 69.09 69.09 65.45 67.27 67.27 67.27
200 80.00 78.18 76.36 76.36 74.55 72.73 74.55 72.73 70.91 70.91 67.27 69.09 70.91 69.09
220 80.00 78.18 78.18 78.18 74.55 72.73 74.55 74.55 72.73 70.91 69.09 72.73 70.91 69.09
240 80.00 78.18 80.00 78.18 74.55 74.55 74.55 74.55 74.55 70.91 70.91 74.55 72.73 69.09
260 80.00 78.18 81.82 78.18 74.55 76.36 74.55 74.55 74.55 72.73 74.55 76.36 72.73 70.91
280 80.00 78.18 81.82 78.18 76.36 76.36 76.36 78.18 78.18 72.73 76.36 78.18 76.36 74.55
300 80.00 80.00 81.82 78.18 78.18 76.36 76.36 80.00 80.00 72.73 78.18 78.18 76.36 76.36
320 81.82 80.00 81.82 80.00 81.82 78.18 78.18 80.00 80.00 76.36 78.18 78.18 78.18 76.36
340 81.82 81.82 81.82 80.00 81.82 80.00 80.00 80.00 81.82 81.82 78.18 78.18 78.18 78.18
360 81.82 81.82 83.64 81.82 81.82 81.82 81.82 80.00 81.82 81.82 78.18 78.18 80.00 78.18
380 81.82 83.64 83.64 81.82 81.82 81.82 81.82 80.00 83.64 81.82 80.00 80.00 81.82 80.00
400 81.82 83.64 83.64 83.64 83.64 83.64 81.82 81.82 83.64 81.82 81.82 81.82 83.64 80.00
420 83.64 83.64 85.45 83.64 83.64 83.64 81.82 81.82 83.64 83.64 83.64 81.82 83.64 83.64
440 83.64 85.45 85.45 83.64 83.64 83.64 81.82 83.64 83.64 83.64 85.45 85.45 83.64 83.64
460 83.64 85.45 87.27 85.45 83.64 85.45 83.64 83.64 87.27 85.45 87.27 85.45 85.45 83.64
480 85.45 85.45 87.27 85.45 83.64 85.45 87.27 85.45 87.27 85.45 89.09 85.45 87.27 85.45
500 85.45 87.27 89.09 85.45 85.45 85.45 87.27 85.45 87.27 85.45 89.09 87.27 89.09 85.45

a The percentage of biological classes in IC93 covered by a subset is given. The column headers indicate the number of conformers (10, 20, 50,
100, 200, 500, and 1000) and the similarity coefficient (t, Tanimoto; c, cosine) for subset selection.

Figure 2. Conformational dependence of PDT descriptors for
maximum dissimilarity selections using Tanimoto (a, top) or cosine
coefficients (b, bottom). The percent biological classes covered are
plotted versus subset sizes (coVerage analysis). The number of
conformers is indicated in the legend:PDT10indicates the use of
10 conformations per molecule.
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is a general limitation of 3D descriptors or one can improve
those descriptors by better, computationally expensive con-
formational analysis procedures plus adequate energy thresh-
olds to generate relevant ensembles. Such a detailed analysis
of the conformational flexibility problem was beyond the
scope of this study.

The entire biological property space of the IC93 parent
database is better represented by subsets designed using 2D
fingerprints, while many biological classes are not repre-
sented in PDT derived or random subsets. For the IC93
database selected subsets with∼460 structures (38%,
maximum Tanimoto coefficient 0.85) still represent all
biological classes. While such a reduction does not neces-
sarily translate to a higher hit rate after screening, it allows
one to retrieve additional hits (entire biological activity
islands) by similarity searches using valid descriptors around
initial actives in a second step.

3.3. Hierarchical Cluster Analysis for Compound Clas-
sifications. Another useful approach for validation and
comparison of chemistry space descriptors is to test the extent
to which those descriptors group compounds of similar
chemical structure and biological activity.5,19 For compound
classification a complete linkage hierarchical cluster analysis
was applied to each descriptor/similarity coefficient combi-
nation. For each descriptor and cluster analysis, the resulting
dendrogram was cut at different levels to generate between
60 and 500 individual clusters (in increments of 20). Cutting
at lower levels produces more clusters with a higher
similarity between all members. These classifications allow
one to evaluate whether compounds of similar chemical
structure and biological activity are grouped into similar
clusters (cluster separation analysis). For each cluster level
of each individual descriptor/coefficient combination, the
average proportionp over all biological classes is plotted in
Figure 3 versus the number of clusters at a certain level,
while numerical results are reported in Table 4.

Again 2D fingerprints perform significantly better than
PDTs, while both similarity coefficients behave similarly.
In Figure 3a the average proportions for PDTs (100
conformers) are compared to those for 2D fingerprints. When
60 clusters are generated from the dendrograms, an average
proportionp of 0.33/0.39 (Tanimoto/cosine) is observed for
2D fingerprints, while for PDTs a proportion of only 0.12/
0.14 is computed. For comparison the mean proportion of
active structures in the entire database is 0.018. When the
number of clusters is increased, these differences between
both descriptors are more significant (300 clusters: 0.88/
0.88 for 2D fingerprints, but 0.58/0.56 for PDTs).

For a better assessment of the descriptors’ abilities to group
active molecules, additional 10 hierarchical cluster analyses
were carried out using random numbers as descriptors. Their
results were analyzed similarly; random proportions over all
classes are averaged, listed in Table 4 (RandomAV), and
plotted in Figure 3 for comparison.

Any increase in the proportionp of actives in the active
cluster subset for valid molecular descriptors can arise from
two different origins.19 When more clusters are generated
than active molecules are present in a data set by ap-
propriately partitioning the hierarchical cluster dendrogram,
the actives may distribute at no more than one per cluster.
Such a distribution is very likely using random numbers for
clustering. Cutting the dendrogram at even lower levels will

not increase the number of active clusters but reject more
and more inactives from the active cluster subset by further
partitioning. Hence, the proportionp must increase with an
increasing number of clusters. This is revealed by Figure 3,
where an increasing number of clusters from the same
dendrogram are connected. As expected, the average random
proportionp also increases with increased partitioning of the
dendrogram, i.e., when more clusters are generated, although
no grouping of active compounds has taken place. Thus the

Figure 3. Hierarchical cluster analysis of the IC93 database. The
average proportionp on they-axis is plotted versus the number of
clusters generated at different levels of the dendrogram: (a, top)
Comparison between 2D fingerprints and PDTs generated using
100 conformers (Tanimoto or cosine coefficients are both used);
(b, middle) comparison between various numbers of conformers
to generate the PDT fingerprints (Tanimoto coefficient); (c, bottom)
comparison between various numbers of conformers to generate
the PDT fingerprints (cosine coefficient).RandomAV indicates an
average over 10 individual cluster analyses using random numbers.
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Table 4. Hierarchical Cluster Analysis of the IC93 Database Using 2D Fingerprints or 3D PDTs

(a) Comparison between 2D Fingerprints and PDTs (100 Conformers)a

NCluster FP•Tanimoto FP•Cosine PDT•Tanimoto PDT•Cosine RandomAv

60 0.33 0.39 0.12 0.14 0.059
80 0.45 0.46 0.15 0.18 0.073

100 0.58 0.57 0.20 0.21 0.086
120 0.68 0.66 0.23 0.24 0.099
140 0.76 0.77 0.27 0.29 0.111
160 0.78 0.80 0.32 0.33 0.125
180 0.81 0.83 0.36 0.37 0.136
200 0.83 0.85 0.41 0.41 0.149
220 0.84 0.85 0.45 0.44 0.161
240 0.85 0.86 0.49 0.48 0.175
260 0.87 0.86 0.51 0.50 0.186
280 0.88 0.88 0.55 0.54 0.199
300 0.88 0.88 0.58 0.56 0.212
320 0.90 0.89 0.62 0.58 0.223
340 0.91 0.91 0.64 0.59 0.233
360 0.91 0.92 0.65 0.62 0.246
380 0.91 0.92 0.66 0.64 0.256
400 0.94 0.94 0.67 0.65 0.265
420 0.94 0.94 0.69 0.68 0.275
440 0.94 0.94 0.71 0.71 0.287
460 0.95 0.95 0.73 0.75 0.296
480 0.95 0.95 0.73 0.74 0.306
500 0.95 0.95 0.75 0.76 0.316

(b) Increasing Number of Conformers To Generate PDT Descriptor for
Hierarchical Clustering Based on the Tanimoto Coefficientb

NCluster NConf10 NConf20 NConf50 NConf100 NConf200 NConf500 NConf1000

60 0.13 0.12 0.12 0.12 0.13 0.12 0.12
80 0.17 0.18 0.17 0.15 0.16 0.16 0.15

100 0.21 0.22 0.21 0.20 0.20 0.19 0.17
120 0.27 0.27 0.25 0.23 0.23 0.22 0.22
140 0.33 0.31 0.29 0.27 0.26 0.27 0.25
160 0.39 0.35 0.35 0.32 0.30 0.31 0.30
180 0.44 0.41 0.39 0.36 0.33 0.32 0.33
200 0.50 0.46 0.42 0.41 0.38 0.36 0.38
220 0.53 0.51 0.49 0.45 0.43 0.41 0.41
240 0.57 0.55 0.53 0.49 0.46 0.45 0.44
260 0.62 0.57 0.57 0.51 0.51 0.47 0.48
280 0.66 0.60 0.60 0.55 0.52 0.49 0.51
300 0.70 0.63 0.62 0.58 0.55 0.54 0.55
320 0.72 0.67 0.63 0.62 0.58 0.56 0.59
340 0.73 0.68 0.66 0.64 0.61 0.60 0.61
360 0.74 0.70 0.68 0.65 0.66 0.61 0.64
380 0.76 0.72 0.68 0.66 0.67 0.63 0.66
400 0.77 0.73 0.70 0.67 0.69 0.65 0.67
420 0.78 0.74 0.72 0.69 0.68 0.66 0.68
440 0.79 0.74 0.73 0.71 0.70 0.68 0.68
460 0.79 0.78 0.76 0.73 0.71 0.71 0.69
480 0.80 0.79 0.77 0.73 0.73 0.71 0.70
500 0.82 0.79 0.78 0.75 0.74 0.76 0.72

(c) Increasing Number of Conformers to Generate PDT Descriptor for
Hierarchical Clustering Based on the Cosine Coefficientc

NCluster NConf10 NConf20 NConf50 NConf100 NConf200 NConf500 NConf1000

60 0.15 0.15 0.14 0.14 0.13 0.12 0.12
80 0.19 0.19 0.17 0.18 0.16 0.15 0.16

100 0.25 0.22 0.23 0.21 0.20 0.18 0.18
120 0.29 0.26 0.26 0.24 0.22 0.21 0.21
140 0.32 0.30 0.32 0.29 0.28 0.26 0.27
160 0.38 0.36 0.36 0.33 0.32 0.29 0.30
180 0.44 0.40 0.40 0.37 0.35 0.32 0.32
200 0.47 0.45 0.45 0.41 0.38 0.36 0.35
220 0.53 0.49 0.47 0.44 0.42 0.39 0.39
240 0.56 0.53 0.51 0.48 0.46 0.42 0.42
260 0.58 0.56 0.56 0.50 0.49 0.46 0.45
280 0.61 0.60 0.60 0.54 0.53 0.49 0.49
300 0.65 0.61 0.61 0.56 0.54 0.51 0.51
320 0.66 0.63 0.65 0.58 0.56 0.55 0.53
340 0.67 0.66 0.65 0.59 0.58 0.59 0.58
360 0.71 0.68 0.66 0.62 0.60 0.61 0.59
380 0.72 0.71 0.66 0.64 0.62 0.62 0.60
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averaged random proportions reflect the lowest possible
performance of hierarchical clustering. A further increase
in this proportion will only occur if a particular descriptor
ranks a pair of actives higher than similar pairs of actives
and inactives. Indeed, a certain ability to group active
compounds is found for all descriptors, as the average
proportions are always higher than averaged random propor-
tions in Figure 3.

Average proportions for an increasing number of conform-
ers to generate PDT fingerprints are plotted in Figure 3b for
Tanimoto coefficients and Figure 3c for cosine coefficients
versus the number of clusters. The results are similar to those
in section 3.2. For none of the PDT descriptors obtained for

different numbers of conformers, an average proportionp
comparable to 2D fingerprints is observed. Again lower
numbers of conformers (10 or 20, indicated in Figure 3 as
NConf10, NConf20) perform better for all numbers of
clusters. While only 10 conformers and 300 clusters gener-
ated led to an average proportionp of 0.70/0.65 (Tanimoto/
cosine), an increase to 100 conformers reduces this propor-
tion to 0.58/0.56. In contrast, using 1000 conformers for PDT
fingerprints further reduces this average proportionp to 0.55/
0.51. Similar observations can be made for all numbers of
clusters generated from the corresponding hierarchical cluster
analyses. Thus a more detailed consideration of conforma-
tional flexibility to generate PDT fingerprints led to reduced

Table IV (Continued)

(c) Increasing Number of Conformers to Generate PDT Descriptor for
Hierarchical Clustering Based on the Cosine Coefficientc

NCluster NConf10 NConf20 NConf50 NConf100 NConf200 NConf500 NConf1000

400 0.73 0.71 0.68 0.65 0.65 0.64 0.61
420 0.76 0.73 0.71 0.68 0.69 0.64 0.63
440 0.77 0.76 0.73 0.71 0.69 0.66 0.69
460 0.78 0.78 0.75 0.75 0.71 0.66 0.68
480 0.83 0.80 0.76 0.74 0.72 0.70 0.70
500 0.83 0.83 0.78 0.76 0.75 0.72 0.70

a The average proportion for 55 target classes from the IC93 database monitors the ability of a descriptor to group active compounds: NClusters,
number of clusters formed; FP•Tanimoto, 2D fingerprints and the Tanimoto coefficient; FP•Cosine, 2D fingerprints and the cosine coefficient;
PDT•Tanimoto, 3D PDTs (100 conformers) and the Tanimoto coefficient; PDT•Cosine, 3D PDTs (100 conformers) and the cosine coefficient;
RandomAv, averaged proportions over 10 cluster analyses using random numbers as descriptors.b The column headers indicate the number of
conformers used to derive the descriptor. See part a for details.c See a and b for details.

Figure 4. Combination of 2D fingerprints and PDT descriptors for maximum dissimilarity selections using (a, top left) the 100 conformers
and Tanimoto coefficient; (b, top right) 100 conformers and the cosine coefficient; (c, bottom left) 10 conformers and the Tanimoto coefficient;
(d, bottom right) 10 conformers and the cosine coefficient. The percent biological classes covered are plotted versus subset sizes (coVerage
analysis). The individual weighting factor for 2D fingerprints is indicated in the figure’s legend:FP02t indicates a weighting of 0.2/0.8 for
2D fingerprints/PDTs using the Tanimoto coefficient as the similarity coefficient.
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ability to group active and inactive compounds into similar
classes.

3.4. Combining 2D and PDT Fingerprints for Selection
and Clustering. Another study was carried out to combine
the performance of 2D fingerprints with the interesting
properties of PDT fingerprints. Although 2D fingerprint
descriptors outperformed many other descriptors, they only
led to identification of chemically similar classes in a
similarity search, driven by 2D topology. It is hardly possible
to identify candidates from nonrelated scaffolds in a 2D
fingerprint-based search, while navigating from analogues
of one chemical scaffold to another series should be possible
with 3D descriptors, as they rank similarities of molecules
by spatial properties and interactions. Thus, both descriptors
were combined by averaging appropriately weighted pairwise
similarity coefficients. The different weighting factors were

changed from 0.2/0.8 (2D fingerprints/PDTs) to 0.8/0.2 in
increments of 0.1. The weighting factors for PDTs are
defined as (1-2D•fingerprint•weight). The resulting com-
bined pairwise similarity coefficient matrices were used for
maximum dissimilarity-based compound selection and hi-
erarchical cluster analysis using the Tanimoto and cosine
coefficients. Conformational flexibility was taken into ac-
count by using 10 or 100 conformers for generating the PDT
descriptor.

Figure 4 summarizes the maximum dissimilarity results
for differently weighted combinations of 2D fingerprints and
3D PDT descriptors. Weighting factors for 2D fingerprints
are indicated in the corresponding figure legends:FP02t
refers to weighting factors of 0.2/0.8 for 2D fingerprints/
PDTs and the Tanimoto coefficient. Numerical results are
reported in Table 5.

Table 5. Combining 2D Fingerprint and PDT Descriptors for Maximum Dissimilarity Selectiona

NComp FP02t FP02c FP03t FP03c FP04t FP04c FP05t FP05c FP06t FP06c FP07t FP07c FP08t FP08c

(a) 100 Conformers
60 56.36 47.27 60.00 54.55 61.82 54.55 63.64 52.73 60.00 58.18 58.18 60.00 56.36 60.00
80 61.82 54.55 63.64 61.82 67.27 56.36 65.45 61.82 67.27 61.82 69.09 65.45 65.45 67.27

100 65.45 63.64 65.45 61.82 67.27 63.64 72.73 65.45 70.91 69.09 78.18 70.91 72.73 72.73
120 65.45 65.45 69.09 67.27 72.73 67.27 78.18 70.91 80.00 74.55 81.82 74.55 78.18 78.18
140 67.27 67.27 72.73 70.91 74.55 70.91 80.00 72.73 81.82 76.36 85.45 80.00 81.82 81.82
160 74.55 70.91 76.36 74.55 78.18 76.36 83.64 74.55 83.64 81.82 87.27 81.82 83.64 83.64
180 76.36 72.73 76.36 76.36 81.82 78.18 83.64 81.82 83.64 83.64 87.27 81.82 89.09 89.09
200 76.36 72.73 80.00 78.18 85.45 81.82 85.45 83.64 85.45 83.64 89.09 83.64 89.09 89.09
220 80.00 72.73 81.82 78.18 85.45 85.45 85.45 83.64 89.09 85.45 89.09 83.64 89.09 89.09
240 81.82 74.55 83.64 80.00 85.45 85.45 85.45 83.64 89.09 89.09 89.09 89.09 89.09 90.91
260 81.82 76.36 83.64 80.00 85.45 85.45 85.45 83.64 89.09 89.09 90.91 89.09 90.91 90.91
280 85.45 76.36 83.64 83.64 85.45 85.45 89.09 83.64 89.09 90.91 90.91 89.09 90.91 90.91
300 87.27 80.00 83.64 83.64 85.45 85.45 89.09 87.27 89.09 90.91 90.91 89.09 90.91 90.91
320 87.27 80.00 83.64 83.64 85.45 85.45 89.09 87.27 89.09 90.91 90.91 89.09 90.91 90.91
340 87.27 80.00 83.64 85.45 85.45 85.45 89.09 87.27 92.73 90.91 90.91 90.91 90.91 90.91
360 87.27 81.82 83.64 85.45 87.27 87.27 89.09 87.27 94.55 90.91 90.91 90.91 92.73 90.91
380 87.27 85.45 83.64 85.45 87.27 87.27 89.09 87.27 94.55 90.91 90.91 90.91 94.55 90.91
400 87.27 85.45 85.45 85.45 89.09 89.09 90.91 89.09 96.36 92.73 94.55 90.91 98.18 92.73
420 87.27 85.45 87.27 85.45 89.09 90.91 92.73 89.09 98.18 94.55 96.36 92.73 98.18 96.36
440 89.09 85.45 89.09 89.09 90.91 90.91 96.36 89.09 98.18 96.36 96.36 94.55 98.18 96.36
460 90.91 87.27 90.91 89.09 92.73 90.91 96.36 92.73 98.18 96.36 96.36 94.55 100.00 98.18
480 90.91 87.27 90.91 89.09 94.55 92.73 96.36 96.36 98.18 96.36 96.36 94.55 100.00 100.00
500 90.91 89.09 90.91 90.91 96.36 92.73 96.36 98.18 98.18 96.36 96.36 96.36 100.00 100.00

(b) 10 Conformers
60 54.55 52.73 60.00 60.00 58.18 60.00 58.18 61.82 56.36 60.00 61.82 61.82 56.36 54.55
80 60.00 58.18 69.09 67.27 67.27 63.64 69.09 67.27 67.27 69.09 67.27 67.27 63.64 69.09

100 69.09 67.27 70.91 70.91 69.09 67.27 74.55 72.73 72.73 76.36 72.73 72.73 72.73 76.36
120 74.55 76.36 80.00 78.18 74.55 72.73 78.18 76.36 76.36 80.00 80.00 76.36 78.18 80.00
140 80.00 78.18 81.82 78.18 76.36 74.55 83.64 76.36 83.64 81.82 81.82 78.18 78.18 81.82
160 80.00 78.18 81.82 78.18 83.64 74.55 83.64 80.00 85.45 83.64 83.64 83.64 81.82 83.64
180 80.00 78.18 83.64 78.18 83.64 80.00 85.45 81.82 89.09 83.64 85.45 85.45 83.64 85.45
200 81.82 78.18 83.64 80.00 85.45 81.82 87.27 83.64 89.09 89.09 89.09 89.09 87.27 89.09
220 81.82 78.18 83.64 80.00 85.45 81.82 90.91 85.45 90.91 89.09 89.09 89.09 89.09 89.09
240 83.64 81.82 85.45 80.00 89.09 83.64 90.91 87.27 94.55 92.73 90.91 90.91 89.09 89.09
260 83.64 81.82 87.27 81.82 89.09 83.64 90.91 89.09 94.55 92.73 90.91 94.55 89.09 90.91
280 85.45 83.64 87.27 83.64 90.91 85.45 90.91 89.09 94.55 94.55 90.91 94.55 89.09 90.91
300 85.45 83.64 87.27 85.45 90.91 87.27 94.55 89.09 94.55 94.55 90.91 94.55 89.09 90.91
320 85.45 83.64 89.09 85.45 90.91 87.27 94.55 89.09 94.55 94.55 90.91 94.55 89.09 90.91
340 85.45 83.64 90.91 85.45 94.55 87.27 94.55 89.09 94.55 94.55 92.73 94.55 92.73 90.91
360 85.45 83.64 90.91 87.27 94.55 89.09 94.55 89.09 96.36 94.55 92.73 94.55 96.36 92.73
380 87.27 83.64 90.91 87.27 94.55 89.09 94.55 89.09 100.00 94.55 94.55 94.55 96.36 96.36
400 89.09 83.64 90.91 87.27 98.18 89.09 98.18 92.73 100.00 94.55 94.55 96.36 96.36 96.36
420 89.09 83.64 90.91 87.27 98.18 90.91 98.18 92.73 100.00 94.55 98.18 96.36 98.18 100.00
440 89.09 83.64 96.36 87.27 98.18 92.73 98.18 92.73 100.00 94.55 100.00 98.18 98.18 100.00
460 90.91 85.45 96.36 87.27 98.18 92.73 98.18 94.55 100.00 96.36 100.00 98.18 100.00 100.00
480 90.91 87.27 96.36 87.27 98.18 96.36 100.00 96.36 100.00 96.36 100.00 100.00 100.00 100.00
500 96.36 87.27 96.36 89.09 98.18 96.36 100.00 98.18 100.00 96.36 100.00 100.00 100.00 100.00

a The percentage of covered biological classes in IC93 by a subset with a particular population is given. Column headers indicate the weights
for 2D fingerprints for combined descriptors and the similarity coefficient (t, Tanimoto; c, cosine). The PDT weight is 1- FP•weight. NComp,
number of compounds in selected subset.

USE OF 2D AND 3D DESCRIPTORS FORDIVERSE SUBSETS J. Chem. Inf. Comput. Sci., Vol. 39, No. 6, 19991219



In general higher weighting factors for 2D fingerprints led
to higher coverage of biological classes for all subset sizes
and both similarity coefficients plotted in Figure 4 on the
x-axis. For larger subset sizes (>300) and Tanimoto coef-
ficients (Figure 4a), 2D fingerprints perform best. In contrast
a 0.7/0.3 weighted descriptor outperforms 2D fingerprints
alone for smaller subset sizes (<300). Thus it is possible to
increase the performance of 2D fingerprints by a combined
descriptor strategy for smaller subset sizes. This is not seen,
when interpreting results obtained using the cosine coefficient
and 100 conformers (Figure 4b), as here 2D fingerprints
perform as good as or better than combined descriptors.

When combined descriptors are computed using a lower
number of conformers for PDT fingerprints, the overall
performance increases, as expected from studies with varied
numbers of conformers for PDTs alone. Individual results
for only 10 conformers are plotted in Figure 4c (Tanimoto
coefficient) and Figure 4d (cosine coefficient). In the range
between 180 and 300 members per subsets the combined
descriptors clearly outperform 2D fingerprints. Weighting
factors of 0.6 and 0.7 perform particularly good, thus clearly
showing that an improvement over 2D fingerprints is possible
using such a combined 2D/3D descriptor. While 85% of all
biological classes are covered for 2D fingerprints and 180
members, a combination with a weighting factor of 0.6 led
to a coverage rate of 89% using the Tanimoto coefficient.
When investigating the cosine coefficient, this increased
performance of combined descriptors starts at larger subset
sizes (>220) but clearly outperforms 2D fingerprints. For
260 subset members, a coverage of 93% for a weighting
factor of 0.6 is observed, while 2D fingerprints alone only
led to 89% using the cosine coefficient. Thus both similarity
coefficients for combined descriptors and weighting factors
of 0.6/0.4 or 0.7/0.3 (2D fingerprints/PDTs) perform better
as 2D fingerprints alone for medium sized subsets (200 to
300 members) and a small number of conformers. Those
descriptors perform less efficiently, using a higher number
of conformers for generating the PDT fingerprint, probably
because of conformational averaging problems outlined
above.

The interpretation of hierarchical clustering results for
various combined descriptors and the Tanimoto coefficient
led to a similar picture for PDT fingerprints based on 10
and 100 conformers, respectively. In general, higher weight-
ing factors for 2D fingerprints led to an increase of the
averaged proportionp. Furthermore a lower number of
conformers also increases the average proportion. For smaller
numbers of clusters (<200) 2D fingerprints perform best for
all descriptor combinations and numbers of conformers,
while for larger numbers of clusters 0.7/0.3 and 0.8/0.2
weighted 2D fingerprint/PDT descriptors show similar
performances compared to 2D fingerprints, when investigat-
ing the results for 100 conformers. For each cluster level of
each combined descriptor, the average proportionp over 55
biological classes is plotted in Figure 5 versus the number
of clusters generated at a certain cluster level. Abbreviations
such asFP02 in the figure’s legend refers to weighting
factors such as 0.2/0.8 for 2D fingerprints/PDTs. Numerical
results from the hierarchical cluster analysis are summarized
in Table 6. The combination of 3D information into standard
2D fingerprints does not improve average proportionsp at
different cluster levels for 100 conformers (Figure 5a); while

only 10 conformers are used, a remarkable improvement for
the average proportion is observed for subset populations
between 200 and 360 compounds (Figure 5b). It clearly can
be seen that combined descriptors with weighting factors
between 0.5 and 0.8 for 2D fingerprints outperform 2D
fingerprints alone for those subset populations. In contrast,
for larger subset sizes and both numbers of conformers, 2D
fingerprints alone perform similarly to those combined
descriptors.

3.5. Sequential Dissimilarity Selection of Diverse Com-
pound Subsets.In another study a sequential selection
algorithm available in commercial software products22,23was
used, where any selection is based on the dissimilarity of a
candidate molecule to the single composite fingerprint as
the union of all molecules of the previous selections. PDT
results in terms of coverage of biological classes are plotted
in Figure 6a (PDT•ORIG) for IC93 and Figure 6b for the
BAYER database, while 2D fingerprint results using maxi-
mum dissimilarity selection are included for reference
(FP•MAXDISSin Figure 6). These results are summarized
in Table 7. This approach led to lower coverage rates than
those obtained by random selections. The BAYER database

Figure 5. Combination of 2D fingerprints and PDT descriptors
for hierarchical cluster analysis of the IC93 database generated using
the Tanimoto coefficient: (a, top) 100 conformers for PDT
generation; (b, bottom) 10 conformers for PT generation. The
average proportionp on they-axis is plotted versus the number of
clusters generated at different levels of the dendrogram. The
individual weighting factor for 2D fingerprints is indicated in the
figure’s legend: FP02t indicates a weighting of 0.2/0.8 for 2D
fingerprints/PDTs;RandomAV indicates an average over 10 indi-
vidual cluster analyses using random numbers as descriptors.
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with 11 different biological classes confirmed those results,
which are a consequence of the sequential order of candidate
evaluation, leading to an enrichment by the first molecules
of a data set.

This led us to evaluate another combined selection
strategy. Before sequential selection was applied on the basis
of PDT fingerprints, the initial data set was ordered following
2D fingerprint-based dissimilarity. This corresponds to the
ChemDiVerseimplementation,22 where this sorting is based
on a modified version of 2D atom-pair descriptors.44 The
new PDT-based selection (PDT•CUT85in Figure 6, Table
7) with 60 members covers 58% biological classes for the
IC93 database. A corresponding subset with 15 members now
represents 73% of all biological classes of the BAYER

database, similar to 2D fingerprint-based selections. Thus
small subsets are dominated by 2D fingerprint sorting and
not 3D pharmacophoric key diversity, while no improvement
of 2D fingerprint selections is found. When selecting more
than 440 structures of the IC93 database or 40 structures of
the BAYER database, respectively, all biological classes are
covered using 2D fingerprints, while for IC93 78% and for
BAYER 91% are covered using PDT-based sequential
selection. For those studies a cutoff Tanimoto coefficient of
0.85 was used for adding new compounds to the temporary
selection list. Results for other cutoff values (0.80, 0.90, and
0.95 for IC93 and 0.85, 0.90 for BAYER) are also presented
in Table 7 and Figure 6 (IC93:PDT•CUT85, PDT•CUT90
with 0.85 and 0.90 as cutoffs; BAYER:PDT•CUT85with
a cutoff of 0.85, respectively). In general the subset
PDT•CUT85with a cutoff value of 0.85 performs best. For
smaller subsets from IC93 (<220), this selection performs
better than a random approach, while this is reversed for for
larger subsets, suggesting that the sequential selection
strategy with PDT descriptors is not appropriate. Although
presorting and PDT selection led to improved results, none
of those subsets was superior compared to 2D fingerprints
and maximum dissimilarity techniques.

3.6. Neighborhood Relationship for PDT Fingerprints.
The relationship between structural similarity and biological
activity for PDT fingerprints was investigated using two
QSAR data sets with 138 nonpeptidic angiotensin-converting
enzyme ACE inhibitors45 and 58 dipeptidic ACE inhibi-

Table 6. Combining 2D Fingerprint and PDT Descriptors for
Hierarchical Cluster Analysisa

NCluster FP02t FP03t FP04t FP05t FP06t FP07t FP08t

(a) 100 Conformers
60 0.14 0.20 0.23 0.25 0.27 0.29 0.31
80 0.18 0.26 0.28 0.32 0.35 0.37 0.42

100 0.25 0.30 0.34 0.38 0.43 0.49 0.52
120 0.30 0.36 0.38 0.45 0.49 0.58 0.59
140 0.34 0.41 0.46 0.54 0.59 0.64 0.68
160 0.38 0.47 0.53 0.60 0.64 0.69 0.75
180 0.42 0.54 0.60 0.64 0.72 0.72 0.79
200 0.47 0.60 0.65 0.71 0.74 0.74 0.81
220 0.58 0.65 0.70 0.73 0.77 0.79 0.84
240 0.61 0.67 0.73 0.76 0.79 0.84 0.87
260 0.64 0.71 0.77 0.80 0.85 0.88 0.88
280 0.68 0.74 0.79 0.81 0.87 0.89 0.88
300 0.70 0.76 0.79 0.83 0.90 0.90 0.89
320 0.72 0.77 0.82 0.86 0.91 0.90 0.90
340 0.75 0.78 0.83 0.87 0.91 0.92 0.92
360 0.78 0.80 0.85 0.91 0.92 0.92 0.92
380 0.80 0.84 0.85 0.92 0.93 0.92 0.92
400 0.81 0.86 0.88 0.93 0.93 0.93 0.92
420 0.82 0.88 0.92 0.93 0.93 0.93 0.92
440 0.83 0.88 0.93 0.93 0.93 0.93 0.92
460 0.84 0.90 0.93 0.93 0.93 0.93 0.92
480 0.86 0.93 0.93 0.93 0.93 0.93 0.92
500 0.87 0.93 0.94 0.93 0.94 0.93 0.93

(b) 10 Conformers
60 0.20 0.26 0.29 0.30 0.30 0.31 0.34
80 0.26 0.35 0.36 0.41 0.43 0.41 0.42

100 0.36 0.41 0.44 0.49 0.53 0.52 0.52
120 0.41 0.48 0.54 0.60 0.62 0.61 0.61
140 0.48 0.54 0.60 0.67 0.69 0.71 0.71
160 0.56 0.64 0.69 0.72 0.73 0.74 0.76
180 0.62 0.69 0.72 0.76 0.78 0.78 0.81
200 0.65 0.75 0.78 0.79 0.80 0.82 0.84
220 0.70 0.77 0.81 0.81 0.84 0.85 0.86
240 0.73 0.80 0.83 0.84 0.87 0.87 0.88
260 0.79 0.83 0.86 0.90 0.88 0.88 0.88
280 0.81 0.84 0.86 0.90 0.88 0.89 0.90
300 0.83 0.85 0.87 0.90 0.89 0.89 0.90
320 0.84 0.87 0.90 0.90 0.92 0.90 0.90
340 0.86 0.88 0.90 0.91 0.92 0.90 0.90
360 0.87 0.89 0.92 0.92 0.92 0.92 0.90
380 0.87 0.91 0.92 0.92 0.92 0.91 0.90
400 0.87 0.93 0.92 0.92 0.92 0.91 0.92
420 0.89 0.94 0.93 0.92 0.91 0.92 0.92
440 0.90 0.94 0.93 0.92 0.92 0.91 0.92
460 0.91 0.94 0.93 0.92 0.92 0.91 0.92
480 0.91 0.94 0.94 0.94 0.92 0.91 0.93
500 0.91 0.93 0.93 0.93 0.92 0.92 0.93

a Tanimoto coefficient used as similarity coefficient. The average
proportion for 55 target classes from the IC93 database is reported.
Individual column headers indicate the weights for 2D fingerprints for
combined descriptors. The PDT weight is 1- FP•weight. NClusters,
number of clusters formed.

Figure 6. Percent biological classes covered from (a, top) the IC93
database and (b, bottom) the BAYER database, plotted on they-axis
versus the subset population (x-axis) for selection using various
methods: 2D fingerprints and maximum dissimilarity selection
(FP•MAXDISS), theoretical random selections (RANDOM•THEO),
and different implementations of the PDT selection method
(PDT•ORIG, PDT•CUT85andPDT•CUT90).
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tors.46,47 The PDT fingerprint dissimilarity (1- similarity
coefficient) for Tanimoto or cosine coefficients and 100
conformers was computed for each pair of molecules of a
data set,4a,5resulting in a data table with pairwise dissimilari-
ties and absolute differences of biological activities. Scatter
plots were used to study the descriptor differences on the
x-axis versus the biological differences on they-axis (Figure
7). Such a graph for a valid molecular descriptor should
reveal a characteristic shape, which allows one to derive a
maximum change of the biological activity per change in
the descriptor.4a Following the similarity principle, any small
physicochemical descriptor difference should correlate to
only small changes in biological properties.7,8 Hence, only
a low number of data points is expected for a valid descriptor
in the upper left triangle region of this graph. Any point in
this upper left triangle corresponds to a pair of molecules,
which is similar in terms of the molecular descriptor, but
which reveals different biological properties.

For both data sets two graphs are generated using the
Tanimoto (Figure 7b,d) or the Cosine coefficient (Figure
7a,c). The absolute difference of biological activities for each
pair of compounds is plotted on they-axis versus the
descriptor differences. For both data sets neighborhood plots

with a shape characteristic for valid descriptors are obtained.
The upper left triangles for all descriptor/similarity coefficient
combinations are essentially empty, indicating that PDT
descriptors are able to a certain extent to group structurally
similar molecules for this biological activity. This is in
agreement with results from hierarchical clustering, as both
techniques reveal that structurally similar molecules have
similar activity. However, there are no points in Figure 7
indicating small structure descriptor changes, as found for
other valid descriptors.4a,5While for 2D fingerprints with only
ca. 1000 bits encoding chemical information very small
descriptor differences (i.e. large Tanimoto coefficients>
0.90) are observed; for PDTs with 307 020 bits even for
structurally very similar dipeptides no pair of molecules with
a similarity coefficient> 0.5 is observed. Even the introduc-
tion of an additional methyl group from glycine to alanine
causes the similarity coefficient to significantly decrease.
Thus, more structural differences are encoded in this
representation, leading to those smaller Tanimoto coef-
ficients. Those greater distances do not imply that the PDT
descriptors are less valid than 2D fingerprints, but in
combination with any of the commonly used similarity
coefficients, the full dynamic range for structural comparison

Table 7. Performance of 2D Fingerprints, PDTs, and Random Selections for Designing Subsets Covering the Biological Properties of the IC93
and Bayer Databasea

(a) IC93 Database

NComp FP•MAXDISS PDT•ORIG PDT•CUT80 PDT•CUT85 PDT•CUT90 PDT•CUT95 RANDOM•THEO

60 61.82 14.55 56.36 58.18 54.55 54.55 45.47
80 65.45 14.55 69.09 67.27 60.00 56.36 51.93

100 78.18 21.82 74.55 72.73 65.45 60.00 57.05
120 81.82 29.09 76.36 74.55 67.27 60.00 61.29
140 83.64 30.91 78.18 78.18 67.27 63.64 64.78
160 85.45 30.91 80.00 78.18 69.09 63.64 67.73
180 85.45 34.55 80.00 78.18 70.91 63.64 70.36
200 89.09 34.55 80.00 78.18 70.91 63.64 72.73
220 89.09 34.55 80.00 80.00 72.73 63.64 74.73
240 89.09 38.18 81.82 80.00 72.73 63.64 76.60
260 89.09 43.64 81.82 81.82 72.73 63.64 78.13
280 92.73 43.64 83.64 81.82 72.73 63.64 79.71
300 94.55 43.64 83.64 81.82 72.73 65.45 81.04
320 96.36 43.64 83.64 81.82 72.73 65.45 82.27
340 96.36 43.64 83.64 81.82 72.73 67.27 83.40
360 96.36 47.27 83.64 81.82 72.73 67.27 84.38
380 98.18 49.09 83.64 81.82 72.73 67.27 85.44
400 98.18 50.91 83.64 81.82 74.55 67.27 86.25
420 98.18 50.91 83.64 81.82 74.55 67.27 87.15
440 100.00 50.91 83.64 81.82 74.55 67.27 87.85
460 100.00 50.91 83.64 81.82 76.36 67.27 88.53
480 100.00 89.20

(b) Bayer Database

NComp FP•MAXDISS PDT•ORIG PDT•CUT85 PDT•CUT90 RANDOM•THEO

15 82 45 73 64 59
20 91 55 73 73 67
25 91 64 82 73 72
30 91 73 82 73 77
35 91 73 91 73 81
40 100 73 91 91 84
45 100 73 91 91 86
50 100 73 91 91 88
60 100 73 100 91 92
70 100 91 100 91 94
80 100 91 100 91 97
90 100 91 100 91 97

100 100 91 100 91 98

a Individual values indicate the percentage of biological classes covered by one or more compounds in a subset.
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between 0 and 1 is not used. This might cause a less clear
similarity ranking. Significant information to compare two
molecules might be hidden in noise, when both molecules
are compared using their 3D pharmacophoric patterns.
Furthermore the relevant bioactive conformation is not
known, which might lead to the accumulation of additional
noise.

4. CONCLUSION

The choice of valid molecular descriptors is an essential
problem for designing representative subsets from virtual
libraries and chemical databases. The novelty and interesting
properties of 3D descriptors based on pharmacophore
geometries led to this evaluation of pharmacophoric defini-
tion triplets for selection of representative subsets and for
grouping active compounds into structurally similar classes.
Their performance was studied using maximum dissimilarity
methods, hierarchical cluster analysis, and sequential dis-
similarity selections and compared to 2D fingerprints and
random subsets or randomly generated clusters as reference.
As any valid descriptor should follow the similarity principle,
the degree of separation between active and inactive com-
pounds for a single biological class is important to monitor.
Furthermore any design should remove redundant com-
pounds, but not biologically informative molecules. Hence
their ability to select representative subsets covering biologi-
cal classes to a certain degree is another quality criterium.

All methods lead to similar results: 2D fingerprints
perform significantly better than 3D PDTs, while a lower

number of conformers to generate PDT fingerprints signifi-
cantly improves performances, suggesting that extensive
conformational sampling to account for flexibility introduces
additional noise into the PDT fingerprint. It is not clear
whether this is a limitation of flexible 3D descriptors or can
be addressed by more sophisticated conformational sampling
techniques. For smaller subsets in maximum dissimilarity
selection, PDTs perform significantly better than a random
approach, while for larger subsets, both perfomances are
almost similar. Interestingly generating a 2D/3D descriptor
by combining 2D fingerprints and 3D PDT fingerprints with
different weighting factors led to some combinations with
significantly improved performance. Higher weighting factors
for 2D fingerprints and lower number of conformers for PDT
fingerprints in those fused descriptors improve performances.
Remarkably, some combined descriptors with weighting
factors between 0.5 and 0.8 for 2D fingerprints outperform
2D fingerprints for smaller subsets, while for larger subsets
the performance is similar to 2D fingerprints. The detailed
analysis of the relationship between biological activity and
structural similarity for two smaller data sets revealed that a
lot of important characteristic similarity information is lost
or hidden in noise, when a pair of molecules is compared
using their pharmacophoric patterns only.

The present study suggests that 2D information by itself
or in combination with the 3D PDT fingerprints is indis-
pensable for a successful diversity-based library design,
compound selection, and classification, at least for the
evaluated data sets. Obviously not the entire structural

Figure 7. Comparison of pairwise absolute biological differences versus PDT fingerprint dissimilarities for two data sets: (a, top left) 138
non-peptidic ACE inhibitors and the cosine coefficient; (b, top right) 138 non-peptidic ACE inhibitors and the Tanimoto coefficient; (c,
bottom left) 58 dipeptidic ACE inhibitors and the cosine coefficient; (d, bottom right) 58 dipeptidic ACE inhibitors and the Tanimoto
coefficient.
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information encoded in a PDT fingerprint is relevant for
molecular comparisons, while those descriptors have been
shown to be valid to a certain extent. It might add a much
deeper view into the general problem of 3D versus 2D
descriptors when the outlined validation strategy is applied
to other novel 3D descriptors, recently described in the
literature.24,48,49 It is also suggested that for successful
descriptor design any combination of a 2D topological plus
a 3D geometrical approach might be useful.
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