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The performance of two important 2D and 3D molecular descriptors for rational design to maximize the
structural diversity of databases is investigated in this publication. Those methods are based either on a 2D
description using a binary fingerprint, which accounts for the absence or presence of molecular fragments,
or a 3D description based on the geometry of pharmacophoric features encoded in a fingerprint
(pharmacophoric definition triplets, PDTs). Both descriptors in combination with maximum dissimilarity
selections, complete linkage hierarchical cluster analysis, or sequential dissimilarity selections were compared
to random subsets as reference. This comparison is based on their ability to cover representative biological
classes from parent databasesvérage analysisand the degree of separation between active and inactive
compounds for a biological target from hierarchical clusterioygter separation analysis While the
similarity coefficients (Tanimoto, cosine) show only a minor influence, the number of conformations to
generate the 3D PDT fingerprint lead to remarkably different results. PDT fingerprints derived from a lower
number of conformers perform significantly better, but they are not comparable to a 2D fingerprint-based
design. When 2D and 3D descriptors are combined with weighting faetddss for 2D fingerprints, a
significant improvement of coverage and cluster separation results is observed for a small number of PDT
conformers and medium sized subsets. Some combined descriptors outperform 2D fingerprints, but not for
all subset populations. Applying sequential dissimilarity selection to PDT descriptors reveals that its
performance is dependent on the initial ordering of compounds, while presorting according to 2D fingerprint
diversity does not improve results. Finally the relationship between biological activity and similarity was
investigated, showing that PDTs quantify smaller structural differences due to the large number of bits in
the fingerprint.

1. INTRODUCTION compounds. This should also allow one to select representa-
, , , , i tive compounds covering the properties of the parent database
High-throughput screening and combinatorial chemistry o compinatorial library.One interesting question is, whether
are nowadays changing research in the chemical andg knowledge of the molecular 3D structure or the geometry
pharmaceutical industry. For successful, but efficient, dis- ¢ key features offers advantages for desijAlthough 3D
covery of lead compounds, the use of rational design yjecular structures are often important for explaining
strategies for representative compound subsets is indiSpengyyctyre-activity relationships, most classifications into
sable: Even with the advent of miniaturization strategies, gimjjar and dissimilar ones are still based on a 2D description.
appropriate compound subsets are important to speed up leage\ious investigatiofisof 3D descriptors included align-
finding by hanc.jling'more assays in a given time. Several ment-independent WHIM indicés COMFA steric fieldsi213
methods for diversity selection have been propdséu.  fjayipie UNITY 3D fingerprints, and 3D spatial autocorre-
general designed subsets were shown to perform significantly|5tion functionst415 Although significant enhancements to
better than randomly picked compounds in retrospective copra steric fields were introduced those still require a
analyses. In particular, 2D fingerprints are appropriate for .o ymon framework for superposition. However, none of
designing subsets representing all biological properties of a6 gescriptors led to better results than 2D fingerprints in

parent databasésThey were shown to perform better than o1ms of covering biological properties of a database by
many other common 2D or 3D descriptdrs. smaller subsets.

The concept of molecular diversfty is based on the Publications by Mason et &f;}8 Brown and Martin et
similar property principlé? which states that structurally g 1920 3nd Davied! have highlighted interesting properties
similar molecules should reveal similar physicochemical and of pharmacophoric triplets (PDTs) as novel 3D descriptors
biological properties. Thus it is possible to predict target for selecting representative subsets. Today commercial
properties for a molecule using known values for similar software products are availaBé*for pharmacophore-based
library design. Successful applications of enhanced four-point
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active and inactive compounds and select representativeDue to the large number of existing fragments in a database,
subsets for biological screening using PDTs and 2D finger- it is not possible to assign one individual bit to only a single
prints as reference. fragment. Hence, the following procedure is used: the SLN
The term “pharmacophore definition triplets” refers to a for each fragment generated is mapped to a unique integer
set of three pharmacophoric features, like acceptor atom/in the range of 623! using a cyclic redundancy check
acceptor atom/hydrophobic point. Each possible triangle algorithm3! Each integer is then projected into this size-
geometry for such a triplet disregarding its specification order limited bitstring by a procedure known as “hashing”, setting
is encoded in a fingerprint. Individual bits are referring to one or multiple bits to “1'%? For each feature, multiple
different triangle geometries formed between pharmacophoricoccurrences set more neighboring bits to “1”. This way of
points. storing molecular information allows one to quantify the
These descriptors were evaluated using maximum dis- Similarity of two molecules based on similarity coefficients,
similarity selection and complete linkage hierarchical cluster- like the Tanimoto or cosine coefficiers2°Both coefficients
ing and compared to random subsets. To monitor the are based on the number of bit positions set in both individual
descriptors’ performance, two approaches were used: (a) gbitstrings for both molecules normalized by the number of
coverage analysisnvestigates the sampling of biological bits setin common, while they differ in the applied scaling.
classes from parent databases in smaller subsetsclintar The Tanimoto coefficient is widely used in database analysis,
separation analysis used to assess the degree of separationas it has certain properties making the work with larger data
between active and inactive compounds for a particular Sets very efficient. Here we used both similarity coefficients
biological class from hierarchical clustering. Furthermore the for comparison. A similarity coefficient of 0 means that both
influence of the number of conformers and the similarity Structures have no “1” bits in common and there is no
coefficient (Tanimoté® or cosine coefficients as dimension-  intersection between both sets of fragments. In contrast, a
less metrics; see ref 26 for a comparison) on the coverageva|ue of 1 indicates that both fingerprints are identical.
and cluster separation results is investigated in detail. Finally ~2.2. Pharmacophore Definition Triplets.Pharmacophore
it is evaluated, whether the combination of 2D fingerprints definition triplets (PDTs) as 3D descriptors offer an alterna-
and PDTs into a single descriptor with different weighting tive way to quantify molecular diversity by encoding spatial
factors can improve subset selection or clustering perfor- relationships within pharmacophoric pattern in molecules.
mance. For this study the Sybyl 6.3 implementation was used. The
Compound selections and classifications were done using2D fingerprint descriptor is modified such that each indi-
reference databases previously used to compare rational andidual bit in a binary fingerprint now refers to a geometry
random approachésa public database containing 1283 m_phgrmacophorlc space. The setting of_an individual bit to
compounds active in 55 biological classes with several 1 indicates the presence of a specific triangle geometry: a
diverse templates and a database encompassing 334 conf€t of three pharmacophoric points separated by three
pounds from 11 different structurectivity series. For these, ~ Particular distances. In general, five pharmacophoric feature
database cross-checking between different classes was don@efinitions were used: acceptor atoms, acceptor sites, donor
and activities were determined in a single laboratory. These a8toms, donor sites, and hydrophobic centers. While donor
data are obtained in defined assay systems and not compilednd acceptor atoms are part of the molecule, site points refer
from literature, which might be a potential source of !0 interaction points located on a “virtual” receptor, defined
uncertainty for the first database. by geometrical criteri& The pharmacophoric feature defini-

The choice of 2D fingerprints as reference is based on tions reflect biologically relevant physicochemical conditions
their comparison to other 2D or 3D descriptéfslt was and accommodate tautomeric potential. A set of 27 distance

found that compound subsets without any compound closerPins is specified from 2.5 to 15 A in steps of 0.5 A, which

than 0.85 to another one (Tanimoto coefficient) are able to €2ds in total to a PDT fingerprint of 307.020 bits encoding
span the biological property space of a database. Each‘tnangle geometries. A single PDT fingerprint per molecule

biological class is still populated by one or more bioactive S stored for maximum dissimilarity-based selections and

compounds. Any removal of redundant structures should hierarchical cluster analysis, while for sequential selection,
result in a subset spanning the same physicochemical® cumulative fingerprint is used as union for all molecules

diversity space and retaining the biological information from 1N the subset. o _
the parent databagé. Any PDT fingerprint is computed for conformational

ensembles to account for molecular flexibility. Starting
2 METHODS geometries were generated by 3D conversion using CON-

CORD?3* Individual conformers were generated by random

All calculations and database manipulations were done setting of rotatable dihedral angles, followed by refinement

using the programs SYBYE and UNITY 2 In general, using thedirected tweakalgorithn®® to release from steric

chemical structures are represented in the SYBYL line overlap, bumps, and strain. This fast conformational analysis
notation (SLN)® Automation of design and analysis pro- allows for processing of larger databases. Pharmacophore
cedures was done using the SYBYL programming language geometries from acceptable conformers were combined into

(SPL), UNIX shell scripts, and PERL scripts. a union fingerprint. The effect of the number of conformers
2.1. Two-Dimensional Fingerprints. Two-dimensional on the sampling performance was also investigated. Hence,
fingerprints, computed using UNIT%8,contain information PDT descriptors were generated using different numbers of
about the presence of molecular fragments in a binary format. conformers for every molecule, namely, 10, 20, 50, 100, 200,

For each structure, a list of all possible fragments of a 500, and 1000, respectively. If for rigid molecules the
particular length is generated and converted into a bitstring. predefined number of conformers could not be generated,
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the fingerprint was computed from the maximum possible for this target. If the entire database contains 1000 com-
number of conformations. pounds, then the proportion of active structures in the entire
Furthermore it was assessed, whether a fusion of 2D database is 80/1008 0.08. Any increase ip compared to
fingerprints and PDTs into a single descriptor can improve that number indicates a trend to separate active and inactive
the subset selection or clustering performance. Different compounds. The proportignwas averaged over all biologi-
weighting factors were applied to 2D fingerprints and PDTs cal classes and plotted versus the increasing number of
before computing the average similarity coefficients. Those clusters at different levels of the complete dendrogram.
weighting factors were changed from 0.2/0.8 for 2D finger- Singletons were excluded from the analysis, as their propor-
prints/PDTs to 0.8/0.2 in increments of 0.1. Here 10 or 100 tion of 1.0 skew the resulfs.
conformers were used to generate PDT fingerprints. Alternatively a sequential selection for PDTs was inves-
2.3. Compound Selection and AnalysisCompound tigated. This is a computationally efficient procedure based
selections for 2D fingerprints and 3D pharmacophoric triplets on a composite PDT database fingerprint. Here a new
were done using the maximum dissimilarity algorifi§ni® structure is selected, if its PDT fingerprint is more diverse
and Tanimoto or cosine coefficients, respectively. A recent than a given Tanimoto coefficient threshold to the composite
comparative study highlights the properties of several fingerprint of the already selected hitlist. Resulting subsets
algorithms for dissimilarity-based selecticfi$n the present  were evaluated using the coverage analysis.
implementation new compounds are successively selected Pprobability calculations were used to compare random
such that they are maximally dissimilar from the previously selections to the rational approach, as earlier descfibed.
selected subset. This process is terminated either when aassuming a particular statistical distribution, it is possible
maximum number of compounds is chosen or when no to compute the probabilitp to find n; hits by n selections
further molecule can be selected without being too similar jn a database with a total &f compounds anéil; hits for a
to one of the already selected members. After randomly particular target. This allows one to evaluate how many target

selecting a seed, every new compound is chosen to beclasses are covered by a purely random selectiom of
maximally dissimilar from all previous members. The first compounds.

three compounds are rejected after the fourth selection, but

they are allowed for later picking. The mean similarity 3. RESULTS AND DISCUSSION

coefficient is computed as average from coefficients for every

structure to its nearest neighbor. For all PDT and combined 3.1. Characteristics of the DatabasesTwo databases
2D/3D descriptor-based dissimilarity selections, the same from diverse sources with different characteristics were
seed Compound as that for 2D fingerprints is utilized. The investigated. The first database 1C93 represents a collection

success of maximum dissimilarity selections is evaluated by of 1283 biologically active molecules as a subset from the
the coverage of biological classes from the original databaselndexChemicud993 databas®.This database was divided

in smaller subsetscoverage analysis into 55 biological classes according to the biological indica-

Hierarchical cluster analydfs*2was used as an alternative tion area, specified as a string in the original database.
method for molecular descriptor assessment and validation,Compounds with similar biological activities were grouped
as it offers more specific control by assigning every molecule into the same class for all subsequent analjé@he second
to a group of compounds. Hierarchical clustering does not database BAYER contains 334 compounds; it was retro-
require any assumption about a final number of clusters to SPectively generated on the basis of quantitative strueture
be generated; small clusters with very similar elements areactivity series for 11 diverse biological assays. One important
nested within larger clusters containing more dissimilar criterium in the selection of these quantitative structure
structures. There is no a priori guideline which method is activity relationship (QSAR) series was the different size
appropriate for a particular data set, while some techniquesand similarity of individual series. Some physicochemical
perform better for grouping similar compoundsHere and structural properties of both databases are summarized
complete linkage clustering was applied using the Tanimoto in ref 3. Inactive compounds were not added, as every
or cosine coefficient; i.e., intercluster distances are computedcompound is assumed to be inactive in all but one biological
using the most distant pair of elements in both clusters, assay, thus providing negative information to evaluate
leading to compact clusters and a lower number of singletons.selection performances of diversity descriptors.

For analysis it was evaluated whether compounds of 3.2. Maximum Dissimilarity Based Selections of Diverse
similar chemical structure and biological activity are grouped Subsets.For the IC93 database, various subsets with 60
(cluster separation analysis The degree of separation 500 members (in steps of 20) were selected using 2D
between actives and inactives for a particular target was fingerprints or 3D PDTs (100 conformers) and Tanimoto or
determined from various cluster levels, generated from the cosine coefficients, respectively. For analysis the coverage
final dendrograms. For this cluster separation anaf/$is, of biological classes is plotted in Figure 1 versus subset
an active clusteris defined as a cluster containing at least population; numerical results are given in Table 1. The
one active compound for a particular target. This allows one coverage of biological classes is reported in percent on the
to define anactive cluster subseas the total number of basis of 55 classes for the IC93 database. Theoretical val-
structures in all active clusters for one target (combined ues for random selections are also listed in Table 1
actives and inactives). Then the proportipnof active (Random_theo.
structures only in this active cluster subset is computed and Two-dimensional fingerprint-based selections perform
compared to the proportion of active structures in the entire significantly better than 3D PDTSs, while there is an almost
database. If 10 active clusters are found with 80 active and similar behavior for both similarity coefficients. The per-
20 inactive compounds, the proportignis 80/100= 0.8 formance of 3D PDTs is significantly better than random
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Table 1. Random versus Maximum Dissimilarity Selection Using 2D Fingerprints or PDTs for Designing Representative Subsets of the IC93
Database (1283 Compounds; 55 Target Cla3ses)

NComp FP_Tanimoto FP_Cosine PDT_Tanimoto PDT_Cosine Randomtheo
60 61.82 58.18 47.27 49.09 45.47
80 65.45 72.73 54.55 56.36 51.93

100 76.36 76.36 60.00 58.18 57.05
120 81.82 81.82 61.82 61.82 61.29
140 83.64 87.27 67.27 63.64 64.78
160 85.45 87.27 69.09 69.09 67.73
180 85.45 87.27 72.73 69.09 70.36
200 89.09 89.09 74.55 72.73 72.73
220 89.09 89.09 74.55 74.55 74.73
240 89.09 89.09 74.55 74.55 76.60
260 89.09 89.09 74.55 74.55 78.13
280 89.09 89.09 76.36 78.18 79.71
300 90.91 89.09 76.36 80.00 81.04
320 96.36 96.36 78.18 80.00 82.27
340 96.36 96.36 80.00 80.00 83.40
360 96.36 96.36 81.82 80.00 84.38
380 98.18 98.18 81.82 80.00 85.44
400 98.18 98.18 81.82 81.82 86.25
420 98.18 98.18 81.82 81.82 87.15
440 100.00 98.18 81.82 83.64 87.85
460 100.00 100.00 83.64 83.64 88.53
480 100.00 100.00 87.27 85.45 89.20
500 100.00 100.00 87.27 85.45

2 The percentage of biological classes in IC93 covered by a subset is reported: NComp, number of compounds in a sllasetnéiB, 2D
fingerprints and the Tanimoto coefficient; ERosine, 2D fingerprints and the cosine coefficient; PDi&animoto, 3D PDTs (100 conformers) and
the Tanimoto coefficient; PDICosine, 3D PDTs (100 conformers) and the cosine coefficient; Randoeo, theoretical random selection.

100 Table 2. Maximum Pairwise Similarity Coefficients (Tanimoto or

Cosine) for Maximum Dissimilarity Selections in the IC93 Database
Using 2D Fingerprints or 3D PDTs

NComp FR_Tanimoto FR_Cosine PDT_Tanimoto PDT_Cosine

90

80

70

g 60 0.34 0.52 0.07 0.17
o & 80 0.39 0.55 0.10 0.23
2 s 100 0.43 0.61 0.12 0.27
$ 120 0.47 0.64 0.16 0.31
g 140 0.50 0.68 0.19 0.34
S = 160 0.55 0.71 0.21 0.37
180 0.59 0.75 0.23 0.40

= R 200 0.64 0.78 0.25 0.43

10 ¢ 4 PDT_Tan 220 0.66 0.80 0.27 0.45

, - -e-POT.Cos | 240 0.68 0.82 0.29 0.47

50 100 150 200 250 300 350 400 450 500 260 072 084 031 049

Number of Selected Compounds 280 0.73 0.85 0.33 0.51

Figure 1. Maximum dissimilarity selection using 2D fingerprints 300 0.75 0.86 0.34 0.53
and 3D PDTs for designing representative subsets of the IC93 320 0.76 0.87 0.36 0.54
database. The percent biological classes covered are plotted versus 340 0.78 0.88 0.38 0.56
subset sizescpverage analysis 360 0.80 0.89 0.39 0.57
380 0.81 0.89 0.41 0.58

. . 400 0.82 0.90 0.41 0.60
selections only for smaller subsets {6200, Table 1), while 420 0.83 0.91 0.44 0.62
for larger ones (280480) a lower performance than expected 440 0.84 0.92 0.44 0.62
for a random approach is observed. When focusing on small 460 0.85 0.92 0.46 0.64
. . . 480 0.86 0.93 0.47 0.65

subsets with 60 members, the 2D fingerprint-based method g, 0.87 0.93 0.49 0.66

samples 62/58% (Tanimoto/cosine) of all biological classes,
while a 45% coverage is expected for a random selection. #No pair of compounds in a subset is more similar than the maximum
The PDT performance of 47/49% reveals a better perfor- Pairwise similarity coefficient. See Table 1 for further details.
mance than random. Selecting more than 440 structures using
2D fingerprints covers all biological classes, while only 88% s obvious: While the maximum similarity coefficient for
are covered using a random subset. Remarkably, for a PDT-2p fingerprints in a subset with 60 diverse compounds is
based selection only 81/84% of all classes are covered, thusy 34/0.52 (Tanimoto/cosine coefficients), these maximum
showing the slightly lower performance of this descriptor sjmilarities are reduced to 0.07/0.17 for PDTs, respectively.
compared to a random approach. In addition the maximum similarity for 500 compounds is
In Table 2 the maximum pairwise Tanimoto or cosine 0.87/0.93 for 2D fingerprints, while for PDTs the highest
coefficients for maximum dissimilarity selections in the IC93 similarities are 0.49/0.66. A PDT fingerprint encodes more
database using 2D fingerprints or 3D PDTs are summarized.subtle structural information than a conventional 2D finger-
Here one of the main differences between both descriptorsprint using a much larger number of bits. While this allows
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Table 3. Increasing Number of Conformers for Subset Selection Using 3D PDTs and the Maximum Dissimilarity Method for the IC93
Databasg

PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT- PDT-
NComp 10t 10c 20t 20c 50t  50c 100t 100c 200t 200c 500t 500c 1000t 1000c

60 47.27 5273 4545 43.64 43.64 41.82 47.27 49.09 47.27 4545 4182 47.27 43.64 47.27

80 58.18 58.18 56.36 5091 56.36 5455 5455 56.36 56.36 5091 5273 5273 56.36 52.73
100 65.45 67.27 60.00 60.00 60.00 60.00 60.00 58.18 61.82 58.18 56.36 56.36 60.00 56.36
120 69.09 7273 69.09 69.09 6182 6545 6182 6182 63.64 6182 60.00 5818 63.64 60.00
140 69.09 7455 7091 7091 6545 67.27 67.27 63.64 6545 6545 63.64 63.64 6545 6545
160 7636 76.36 7455 7455 69.09 69.09 69.09 69.09 67.27 67.27 6545 63.64 67.27 6545
180 78.18 76.36 7455 7455 7273 69.09 7273 69.09 69.09 69.09 6545 67.27 67.27 67.27
200 80.00 78.18 76.36 76.36 7455 7273 7455 7273 7091 7091 67.27 69.09 7091 69.09
220 80.00 78.18 78.18 78.18 7455 7273 7455 7455 7273 7091 69.09 7273 7091 69.09
240 80.00 78.18 80.00 78.18 7455 7455 7455 7455 7455 7091 7091 7455 7273 69.09
260 80.00 78.18 8182 78.18 7455 76.36 7455 7455 7455 7273 7455 7636 7273 70.91
280 80.00 78.18 81.82 78.18 76.36 76.36 76.36 78.18 78.18 7273 76.36 7818 76.36 74.55
300 80.00 80.00 8182 78.18 78.18 76.36 76.36 80.00 80.00 7273 78.18 78.18 76.36 76.36
320 8182 80.00 81.82 80.00 8182 7818 78.18 80.00 80.00 76.36 78.18 78.18 78.18 76.36
340 8182 8182 81.82 80.00 8182 80.00 80.00 80.00 81.82 8182 7818 7818 78.18 78.18
360 8182 8182 8364 8182 8182 8182 8182 80.00 81.82 8182 78.18 78.18 80.00 78.18
380 8182 8364 8364 8182 8182 8182 8182 80.00 8364 8182 8000 8000 8182 80.00
400 8182 83.64 83.64 8364 8364 8364 8182 8182 8364 8182 8182 8182 83.64 80.00
420 83.64 83.64 8545 83.64 8364 8364 8182 8182 8364 8364 8364 8182 8364 83.64
440 83.64 8545 8545 83.64 83.64 8364 8182 83.64 8364 8364 8545 8545 83.64 83.64
460 83.64 8545 87.27 8545 83.64 8545 8364 83.64 87.27 8545 8727 8545 8545 83.64
480 8545 8545 87.27 8545 83.64 8545 87.27 8545 87.27 8545 89.09 8545 87.27 8545
500 8545 87.27 89.09 8545 8545 8545 87.27 8545 87.27 8545 89.09 87.27 89.09 8545

aThe percentage of biological classes in IC93 covered by a subset is given. The column headers indicate the number of conformers (10, 20, 50,
100, 200, 500, and 1000) and the similarity coefficient (t, Tanimoto; ¢, cosine) for subset selection.

one to detect very small differences, there are still too many .
dissimilar triangle geometries populated even in two very 90? 1C93 Tanimoto cosficient
similar molecules. Thus this descriptor does not use the full
dynamic range for the pairwise similarity coefficients 8
(between 0 and 1). Most pairwise similarities fall in a narrow
range, which might cause a less clear similarity ranking.
Similar coverage performances are observed when altering
the number of conformers for PDT descriptors. Figure 2
summarizes the conformational dependence of 3D PDT g

t Classes Covered
*
g

2 ——PDT10
fingerprints for compound selections using the maximum & o pome0
dissimilarity algorithm, while numerical results are reported B PDTI00
in Table 3. None of these PDT descriptors shows coverage T rore
similar to 2D fingerprints. Interestingly, for both similarity —+—PDT1000]
coefficients a lower number of conformers (10 or 20) 0 w0 1m0 om0 ao w0 a0 a0 s
performs better for smaller subset sizes (£8Q0). For very Number of Selected Compounds
small subsets and the Tanimoto coefficient (60, 80) or large 1w e
subsets ¥ 340) with both similarity coefficients, all PDT g0 | fC93 Cosine coefficient

descriptors behave almost similarly with a slight preference

for a lower number of conformers. In general, PDT derived

descriptors with a lower number of conformations and

smaller subset sizes:@40) perform significantly better than

a random selection, while this difference disappears for larger

subsets and all PDT descriptors and similarity coefficients.
Thus extensive conformational sampling to account for

80

70

80

50 | g

40 | 7

Percent Classes Covered

molecular flexibility might introduce additional noise into B romo
PDT fingerprints, especially for a higher number of conform- 2 g
ers. More pharmacophore triangle geometries in a bitstring 1« A
are set by such a larger number of acceptable conformations. | ) ——PDT1000
In contrast, triangle geometries for single low-energy con- 0 100 150 200 250 30 350 400 450 50
formers also reveal low performances as reported eafitér. humber of Selected Compounds

This opens into the general conformational flexibility Figure 2. Conformational dependence of PDT descriptors for
problem associated with 3D descriptors. Without detailed Maximum dissimilarity selections using Tanimoto (a, top) or cosine

studies to investigate the influence of additional conforma- C?;Igg'e\?etfsﬂos' k;clnjtkt)c;r:t).;;&eer::ae;et tgﬁ';g';;l %?: sﬁ;ﬁggfrgf are

tional analysis protocols and parameters on coverage ancconformers is indicated in the legen@DT10indicates the use of
cluster separation results, it cannot be decided whether therel0 conformations per molecule.
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is a general limitation of 3D descriptors or one can improve "1, ]
those descriptors by better, computationally expensive con- oso- ’ M~W
formational analysis procedures plus adequate energy thresh-
olds to generate relevant ensembles. Such a detailed analysis
of the conformational flexibility problem was beyond the
scope of this study. o
The entire biological property space of the 1C93 parent §°-5°'
database is better represented by subsets designed using 2D o« | »/ e
fingerprints, while many biological classes are not repre- | A
sented in PDT derived or random subsets. For the IC93 oa0 T
database selected subsets wit#60 structures (38%, g
maximum Tanimoto coefficient 0.85) still represent all
biological classes. While such a reduction does not neces- o® —— =~~~ —— = " ——_
sarily translate to a higher hit rate after screening, it allows Number of Clusters
one to retrieve additional hits (entire biological activity
islands) by similarity searches using valid descriptors around | 193 Tanimoto coeficient
initial actives in a second step. ]
3.3. Hierarchical Cluster Analysis for Compound Clas- 080 1
sifications. Another useful approach for validation and 070 ]
comparison of chemistry space descriptors is to test the extent
to which those descriptors group compounds of similar
chemical structure and biological activity? For compound
classification a complete linkage hierarchical cluster analysis ~ °#1
was applied to each descriptor/similarity coefficient combi- o030 {
nation. For each descriptor and cluster analysis, the resulting |

—e—FP_Tan
—&—FP_Cos
&« PDT_Tan
- PDT_Cos
-~ RandomAv

Average P
o
3

—e—NConf10 -#—NConf20

dendrogram was cut at different levels to generate between | & - NCOMBO - NConf1o0
60 and 500 individual clusters (in increments of 20). Cutting T NGono00 - Ramomax

at lower levels produces more clusters with a higher °® 0 07 & s me w0 a0 4w oo
similarity between all members. These classifications allow Number of Clusters

one to evaluate whether compounds of similar chemical .,
structure and biological activity are grouped into similar | €93 Cosine coeficient
clusters €luster separation analysisFor each cluster level '
of each individual descriptor/coefficient combination, the
average proportiop over all biological classes is plotted in 070 1
Figure 3 versus the number of clusters at a certain level, _ oso]
while numerical results are reported in Table 4.

Again 2D fingerprints perform significantly better than
PDTs, while both similarity coefficients behave similarly.
In Figure 3a the average proportions for PDTs (100 °*°
conformers) are compared to those for 2D fingerprints. When oz
60 clusters are generated from the dendrograms, an average o, | ¥ o Neoriso. = Neonitoo
proportionp of 0.33/0.39 (Tanimoto/cosine) is observed for . ‘ . . - NCor1000 ___—=- Rardomiv
2D fingerprints, while for PDTs a proportion of only 0.12/ 5 100 150 200 250 300 350 400 450 500
0.14 is computed. For comparison the mean proportion of _ _ _ Number of Clusters
active structures in the entire database is 0.018. When theFigure 3. Hierarchical cluster analysis of the IC93 database. The

S : average proportiop on they-axis is plotted versus the number of
number of clusters is increased, these differences betweeryqiers generated at different levels of the dendrogram: (a, top)

both descriptors are more significant (300 clusters: 0.88/ comparison between 2D fingerprints and PDTs generated using
0.88 for 2D fingerprints, but 0.58/0.56 for PDTSs). 100 conformers (Tanimoto or cosine coefficients are both used);

For a better assessment of the descriptors’ abilities to group(d. middle) comparison between various numbers of conformers

active molecules, additional 10 hierarchical cluster analyses© 9enerate the PDT fingerprints (Tanimoto coefficient); (c, bottom)
' - comparison between various numbers of conformers to generate

were carried out using random numbers as descriptors. Theilie ppT fingerprints (cosine coefficienfrandom# indicates an
results were analyzed similarly; random proportions over all average over 10 individual cluster analyses using random numbers.
classes are averaged, listed in TableRarfdomA), and
plotted in Figure 3 for comparison. not increase the number of active clusters but reject more
Any increase in the proportiop of actives in the active  and more inactives from the active cluster subset by further
cluster subset for valid molecular descriptors can arise from partitioning. Hence, the proportigmmust increase with an
two different originst® When more clusters are generated increasing number of clusters. This is revealed by Figure 3,
than active molecules are present in a data set by ap-where an increasing number of clusters from the same
propriately partitioning the hierarchical cluster dendrogram, dendrogram are connected. As expected, the average random
the actives may distribute at no more than one per cluster.proportionp also increases with increased partitioning of the
Such a distribution is very likely using random numbers for dendrogram, i.e., when more clusters are generated, although
clustering. Cutting the dendrogram at even lower levels will no grouping of active compounds has taken place. Thus the

0.50

Average

0.40

—4—NConf10 = - NConf20
= NConf50 & NConf100




Use oF 2D AND 3D DESCRIPTORS FORDIVERSE SUBSETS

J. Chem. Inf. Comput. Sci., Vol. 39, No. 6, 199217

Table 4. Hierarchical Cluster Analysis of the IC93 Database Using 2D Fingerprints or 3D PDTs

(a) Comparison between 2D Fingerprints and PDTs (100 Conforfners)

NCluster FP_Tanimoto FP_Cosine PDT_Tanimoto PDT_Cosine RandomAv
60 0.33 0.39 0.12 0.14 0.059
80 0.45 0.46 0.15 0.18 0.073

100 0.58 0.57 0.20 0.21 0.086
120 0.68 0.66 0.23 0.24 0.099
140 0.76 0.77 0.27 0.29 0.111
160 0.78 0.80 0.32 0.33 0.125
180 0.81 0.83 0.36 0.37 0.136
200 0.83 0.85 0.41 0.41 0.149
220 0.84 0.85 0.45 0.44 0.161
240 0.85 0.86 0.49 0.48 0.175
260 0.87 0.86 0.51 0.50 0.186
280 0.88 0.88 0.55 0.54 0.199
300 0.88 0.88 0.58 0.56 0.212
320 0.90 0.89 0.62 0.58 0.223
340 0.91 0.91 0.64 0.59 0.233
360 0.91 0.92 0.65 0.62 0.246
380 0.91 0.92 0.66 0.64 0.256
400 0.94 0.94 0.67 0.65 0.265
420 0.94 0.94 0.69 0.68 0.275
440 0.94 0.94 0.71 0.71 0.287
460 0.95 0.95 0.73 0.75 0.296
480 0.95 0.95 0.73 0.74 0.306
500 0.95 0.95 0.75 0.76 0.316
(b) Increasing Number of Conformers To Generate PDT Descriptor for
Hierarchical Clustering Based on the Tanimoto Coeffidient
NCluster NConf10 NConf20 NConf50 NConf100 NConf200 NConf500 NConf1000
60 0.13 0.12 0.12 0.12 0.13 0.12 0.12
80 0.17 0.18 0.17 0.15 0.16 0.16 0.15

100 0.21 0.22 0.21 0.20 0.20 0.19 0.17

120 0.27 0.27 0.25 0.23 0.23 0.22 0.22

140 0.33 0.31 0.29 0.27 0.26 0.27 0.25

160 0.39 0.35 0.35 0.32 0.30 0.31 0.30

180 0.44 0.41 0.39 0.36 0.33 0.32 0.33

200 0.50 0.46 0.42 0.41 0.38 0.36 0.38

220 0.53 0.51 0.49 0.45 0.43 0.41 0.41

240 0.57 0.55 0.53 0.49 0.46 0.45 0.44

260 0.62 0.57 0.57 0.51 0.51 0.47 0.48

280 0.66 0.60 0.60 0.55 0.52 0.49 0.51

300 0.70 0.63 0.62 0.58 0.55 0.54 0.55

320 0.72 0.67 0.63 0.62 0.58 0.56 0.59

340 0.73 0.68 0.66 0.64 0.61 0.60 0.61

360 0.74 0.70 0.68 0.65 0.66 0.61 0.64

380 0.76 0.72 0.68 0.66 0.67 0.63 0.66

400 0.77 0.73 0.70 0.67 0.69 0.65 0.67

420 0.78 0.74 0.72 0.69 0.68 0.66 0.68

440 0.79 0.74 0.73 0.71 0.70 0.68 0.68

460 0.79 0.78 0.76 0.73 0.71 0.71 0.69

480 0.80 0.79 0.77 0.73 0.73 0.71 0.70

500 0.82 0.79 0.78 0.75 0.74 0.76 0.72

(c) Increasing Number of Conformers to Generate PDT Descriptor for
Hierarchical Clustering Based on the Cosine Coeffi¢ient
NCluster NConf10 NConf20 NConf50 NConf100 NConf200 NConf500 NConf1000
60 0.15 0.15 0.14 0.14 0.13 0.12 0.12
80 0.19 0.19 0.17 0.18 0.16 0.15 0.16

100 0.25 0.22 0.23 0.21 0.20 0.18 0.18

120 0.29 0.26 0.26 0.24 0.22 0.21 0.21

140 0.32 0.30 0.32 0.29 0.28 0.26 0.27

160 0.38 0.36 0.36 0.33 0.32 0.29 0.30

180 0.44 0.40 0.40 0.37 0.35 0.32 0.32

200 0.47 0.45 0.45 0.41 0.38 0.36 0.35

220 0.53 0.49 0.47 0.44 0.42 0.39 0.39

240 0.56 0.53 0.51 0.48 0.46 0.42 0.42

260 0.58 0.56 0.56 0.50 0.49 0.46 0.45

280 0.61 0.60 0.60 0.54 0.53 0.49 0.49

300 0.65 0.61 0.61 0.56 0.54 0.51 0.51

320 0.66 0.63 0.65 0.58 0.56 0.55 0.53

340 0.67 0.66 0.65 0.59 0.58 0.59 0.58

360 0.71 0.68 0.66 0.62 0.60 0.61 0.59

380 0.72 0.71 0.66 0.64 0.62 0.62 0.60
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Table IV (Continued)

(c) Increasing Number of Conformers to Generate PDT Descriptor for
Hierarchical Clustering Based on the Cosine Coeffi¢ient

NCluster NConfl10 NConf20 NConf50 NConf100 NConf200 NConf500 NConf1000
400 0.73 0.71 0.68 0.65 0.65 0.64 0.61
420 0.76 0.73 0.71 0.68 0.69 0.64 0.63
440 0.77 0.76 0.73 0.71 0.69 0.66 0.69
460 0.78 0.78 0.75 0.75 0.71 0.66 0.68
480 0.83 0.80 0.76 0.74 0.72 0.70 0.70
500 0.83 0.83 0.78 0.76 0.75 0.72 0.70

@ The average proportion for 55 target classes from the IC93 database monitors the ability of a descriptor to group active compounds: NClusters,
number of clusters formed; EPTanimoto, 2D fingerprints and the Tanimoto coefficient;,_FPosine, 2D fingerprints and the cosine coefficient;
PDT_Tanimoto, 3D PDTs (100 conformers) and the Tanimoto coefficient; POdsine, 3D PDTs (100 conformers) and the cosine coefficient;
RandomAv, averaged proportions over 10 cluster analyses using random numbers as des$cFiptocglumn headers indicate the number of
conformers used to derive the descriptor. See part a for det&te a and b for details.
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Figure 4. Combination of 2D fingerprints and PDT descriptors for maximum dissimilarity selections using (a, top left) the 100 conformers
and Tanimoto coefficient; (b, top right) 100 conformers and the cosine coefficient; (c, bottom left) 10 conformers and the Tanimoto coefficient;
(d, bottom right) 10 conformers and the cosine coefficient. The percent biological classes covered are plotted versus sutizetraiges (
analysig. The individual weighting factor for 2D fingerprints is indicated in the figure’s legeRBE02tindicates a weighting of 0.2/0.8 for

2D fingerprints/PDTs using the Tanimoto coefficient as the similarity coefficient.

Number of Compounds

averaged random proportions reflect the lowest possible different numbers of conformers, an average proporgion
performance of hierarchical clustering. A further increase comparable to 2D fingerprints is observed. Again lower
in this proportion will only occur if a particular descriptor numbers of conformers (10 or 20, indicated in Figure 3 as
ranks a pair of actives higher than similar pairs of actives NConflQ NConf2Q perform better for all numbers of
and inactives. Indeed, a certain ability to group active clusters. While only 10 conformers and 300 clusters gener-
compounds is found for all descriptors, as the average ated led to an average proportiprof 0.70/0.65 (Tanimoto/
proportions are always higher than averaged random propor-cosine), an increase to 100 conformers reduces this propor-
tions in Figure 3. tion to 0.58/0.56. In contrast, using 1000 conformers for PDT
Average proportions for an increasing number of conform- fingerprints further reduces this average proporpda 0.55/
ers to generate PDT fingerprints are plotted in Figure 3b for 0.51. Similar observations can be made for all numbers of
Tanimoto coefficients and Figure 3c for cosine coefficients clusters generated from the corresponding hierarchical cluster
versus the number of clusters. The results are similar to thoseanalyses. Thus a more detailed consideration of conforma-
in section 3.2. For none of the PDT descriptors obtained for tional flexibility to generate PDT fingerprints led to reduced
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Table 5. Combining 2D Fingerprint and PDT Descriptors for Maximum Dissimilarity Seleétion
NComp FP02t FP02c FPO3t FPO3c FPO04t FP04c FPO5t FPO5c FP0O6t FPO6c FPO7t FPO7c FP0O8t FPO0O8c

(a) 100 Conformers

60 56.36 47.27 60.00 5455 61.82 5455 63.64 52.73 60.00 58.18 58.18 60.00 56.36  60.00
80 61.82 5455 63.64 61.82 67.27 56.36 65.45 61.82 67.27 61.82 69.09 65.45 6545  67.27
100 65.45 63.64 6545 61.82 67.27 63.64 72.73 65.45 70.91 69.09 78.18 7091 7273 7273
120 65.45 6545 69.09 67.27 7273 67.27 78.18 70.91 80.00 74.55 81.82 74.55 78.18 78.18
140 67.27 67.27 7273 7091 7455 70.91 80.00 72.73 81.82 76.36 85.45 80.00 8182 81.82
160 7455 7091 76.36 7455 78.18 76.36 83.64 7455 83.64 81.82 87.27 8182 83.64 83.64
180 76.36 72.73 76.36 76.36 81.82 78.18 83.64 81.82 83.64 83.64 87.27 81.82 89.09 89.09
200 76.36 72.73 80.00 78.18 8545 8182 85.45 83.64 85.45 83.64 89.09 83.64 89.09 89.09
220 80.00 72.73 8182 78.18 8545 8545 85.45 83.64 89.09 85.45 89.09 83.64 89.09 89.09
240 81.82 7455 83.64 80.00 8545 8545 85.45 83.64 89.09 89.09 89.09 89.09 89.09 90.91
260 81.82 76.36 83.64 80.00 8545 8545 85.45 83.64 89.09 89.09 90.91 89.09 90.91  90.91
280 85.45 76.36 83.64 83.64 8545 8545 89.09 83.64 89.09 90.91 90.91 89.09 9091  90.91
300 87.27 80.00 83.64 83.64 8545 8545 89.09 87.27 89.09 90.91 90.91 89.09 90.91  90.91
320 87.27 80.00 83.64 83.64 8545 8545 89.09 87.27 89.09 90.91 90.91 89.09 90.91  90.91
340 87.27 80.00 83.64 8545 8545 8545 89.09 87.27 92.73 90.91 90.91 90.91 90.91  90.91
360 87.27 8182 8364 8545 87.27 87.27 89.09 87.27 9455 90.91 90.91 9091 92.73  90.91
380 87.27 8545 83.64 8545 87.27 87.27 89.09 87.27 94.55 90.91 90.91 90.91 9455 90.91
400 87.27 8545 8545 8545 89.09 89.09 90.91 89.09 96.36  92.73 9455 90.91 98.18 92.73
420 87.27 8545 87.27 85.45 89.09 90.91 92.73  89.09 98.18 94.55 96.36  92.73  98.18  96.36

500 9091 89.09 9091 9091 9636 9273 9636 98.18 9818 9636 9636 96.36 100.00 100.00

(b) 10 Conformers

60 5455 52.73 60.00 60.00 58.18 60.00 58.18 61.82 56.36  60.00 61.82 61.82 56.36 54.55

80 60.00 58.18 69.09 67.27 67.27 63.64 69.09 67.27 67.27 69.09 67.27 67.27 63.64  69.09
100 69.09 67.27 7091 7091 69.09 67.27 7455 72.73 72.73 76.36 7273 7273 7273 76.36
120 7455 76.36 80.00 78.18 7455 7273 78.18 76.36 76.36  80.00 80.00 76.36 78.18  80.00
140 80.00 78.18 81.82 78.18 76.36 74.55 83.64 76.36 83.64 81.82 81.82 78.18 78.18 81.82
160 80.00 78.18 8182 78.18 83.64 7455 83.64 80.00 85.45 83.64 83.64 83.64 8182 83.64
180 80.00 78.18 83.64 78.18 83.64 80.00 85.45 81.82 89.09 83.64 85.45 8545 83.64 85.45
200 81.82 78.18 83.64 80.00 8545 8182 87.27 83.64 89.09 89.09 89.09 89.09 87.27  89.09
220 81.82 78.18 83.64 80.00 8545 8182 90.91 85.45 90.91 89.09 89.09 89.09 89.09 89.09
240 83.64 8182 8545 80.00 89.09 83.64 90.91 87.27 9455 92.73 90.91 90.91 89.09  89.09
260 83.64 8182 87.27 81.82 89.09 83.64 90.91 89.09 9455 92.73 90.91 9455 89.09 90.91

460 9091 8545 96.36 87.27 9818 9273 98.18 9455 10000 9636 10000 98.18 100.00 100.00
480 9091 8727 9636 8727 9818 96.36 100.00 9636 100.00 9636 100.00 100.00 100.00 100.00
500 96.36 87.27 96.36 89.09 9818 9636 100.00 9818 100.00 96.36 10000 100.00 100.00 100.00

aThe percentage of covered biological classes in IC93 by a subset with a particular population is given. Column headers indicate the weights
for 2D fingerprints for combined descriptors and the similarity coefficient (t, Tanimoto; c, cosine). The PDT weight B>Lweight. NComp,
number of compounds in selected subset.

ability to group active and inactive compounds into similar changed from 0.2/0.8 (2D fingerprints/PDTs) to 0.8/0.2 in
classes. increments of 0.1. The weighting factors for PDTs are
3.4. Combining 2D and PDT Fingerprints for Selection defined as (+2D_fingerprint_weight). The resulting com-
and Clustering. Another study was carried out to combine bined pairwise similarity coefficient matrices were used for
the performance of 2D fingerprints with the interesting maximum dissimilarity-based compound selection and hi-
properties of PDT fingerprints. Although 2D fingerprint erarchical cluster analysis using the Tanimoto and cosine
descriptors outperformed many other descriptors, they only coefficients. Conformational flexibility was taken into ac-
led to identification of chemically similar classes in a countby using 10 or 100 conformers for generating the PDT
similarity search, driven by 2D topology. It is hardly possible descriptor.
to identify candidates from nonrelated scaffolds in a 2D  Figure 4 summarizes the maximum dissimilarity results
fingerprint-based search, while navigating from analogues for differently weighted combinations of 2D fingerprints and
of one chemical scaffold to another series should be possible3D PDT descriptors. Weighting factors for 2D fingerprints
with 3D descriptors, as they rank similarities of molecules are indicated in the corresponding figure legen&$®02t
by spatial properties and interactions. Thus, both descriptorsrefers to weighting factors of 0.2/0.8 for 2D fingerprints/
were combined by averaging appropriately weighted pairwise PDTs and the Tanimoto coefficient. Numerical results are
similarity coefficients. The different weighting factors were reported in Table 5.
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In general higher weighting factors for 2D fingerprints led 100
to higher coverage of biological classes for all subset sizes s
and both similarity coefficients plotted in Figure 4 on the
x-axis. For larger subset sizes 300) and Tanimoto coef-
ficients (Figure 4a), 2D fingerprints perform best. In contrast
a 0.7/0.3 weighted descriptor outperforms 2D fingerprints o o
alone for smaller subset sizes300). Thus it is possible to
increase the performance of 2D fingerprints by a combined
descriptor strategy for smaller subset sizes. This is not seen, (K
when interpreting results obtained using the cosine coefficient °®7¢
and 100 conformers (Figure 4b), as here 2D fingerprints oz {s

1C93 Tanimoto coefficient, 100 conformers

0.80 q

0.70

@
o
© 0.50
@
>
<

0.80 4

perform as good as or better than combined descriptors. oro ] e pRee [ fhow
When combined descriptors are computed using a lower ooty e

number of conformers for PDT fingerprints, the overall 5w w 20 20 w0 o0 0 s0 0

performance increases, as expected from studies with varied Number of Clusters

numbers of conformers for PDTs alone. Individual results

for only 10 conformers are plotted in Figure 4c (Tanimoto 1G98 Tanimoto cosffient, 10 conformers o4

coefficient) and Figure 4d (cosine coefficient). In the range
between 180 and 300 members per subsets the combined ¢
descriptors clearly outperform 2D fingerprints. Weighting 070
factors of 0.6 and 0.7 perform particularly good, thus clearly
showing that an improvement over 2D fingerprints is possible
using such a combined 2D/3D descriptor. While 85% of all
biological classes are covered for 2D fingerprints and 180 ™ oo
members, a combination with a weighting factor of 0.6 led
to a coverage rate of 89% using the Tanimoto coefficient.
When investigating the cosine coefficient, this increased
performance of combined descriptors starts at larger subset o
sizes ¢220) but clearly outperforms 2D fingerprints. For 000
260 subset members, a coverage of 93% for a weighting S T G

. : . . Number of Clusters
factor of 0.6 is observed, while 2D fingerprints alone only Figure 5. Combination of 2D fingerprints and PDT descriptors

led to 89% using the cosine coefficient. Thus both similarity o hierarchical cluster analysis of the IC93 database generated using
coefficients for combined descriptors and weighting factors the Tanimoto coefficient: (a, top) 100 conformers for PDT

of 0.6/0.4 or 0.7/0.3 (2D fingerprints/PDTs) perform better generation; (b, bottom) 10 conformers for PT generation. The
as 2D fingerprints alone for medium sized subsets (200 to &verage proportiop on they-axis is plotted versus the number of

clusters generated at different levels of the dendrogram. The
300 members) and a small number of conformers. Thoseindividual weighting factor for 2D fingerprints is indicated in the

descriptors perform less efficiently, using a higher number figyre’s legend: FPO2t indicates a weighting of 0.2/0.8 for 2D
of conformers for generating the PDT fingerprint, probably fingerprints/PDTsRandomA indicates an average over 10 indi-
because of conformational averaging problems outlined vidual cluster analyses using random numbers as descriptors.
above.

The interpretation of hierarchical clustering results for only 10 conformers are used, a remarkable improvement for
various combined descriptors and the Tanimoto coefficient the average proportion is observed for subset populations
led to a similar picture for PDT fingerprints based on 10 between 200 and 360 compounds (Figure 5b). It clearly can
and 100 conformers, respectively. In general, higher weight- be seen that combined descriptors with weighting factors
ing factors for 2D fingerprints led to an increase of the between 0.5 and 0.8 for 2D fingerprints outperform 2D
averaged proportiorp_ Furthermore a lower number of ﬁngerprints alone fOI’ those Subset pOpU|ati0nS. In Contrast,
conformers also increases the average proportion. For smallefor larger subset sizes and both numbers of conformers, 2D
numbers of clusters<200) 2D fingerprints perform best for ~ fingerprints alone perform similarly to those combined
all descriptor combinations and numbers of conformers, descriptors.
while for larger numbers of clusters 0.7/0.3 and 0.8/0.2  3.5. Sequential Dissimilarity Selection of Diverse Com-
weighted 2D fingerprint/PDT descriptors show similar pound Subsets.In another study a sequential selection
performances compared to 2D fingerprints, when investigat- algorithm available in commercial software prodédétéwas
ing the results for 100 conformers. For each cluster level of used, where any selection is based on the dissimilarity of a
each combined descriptor, the average propopiomer 55 candidate molecule to the single composite fingerprint as
biological classes is plotted in Figure 5 versus the number the union of all molecules of the previous selections. PDT
of clusters generated at a certain cluster level. Abbreviationsresults in terms of coverage of biological classes are plotted
such asFPO02 in the figure’s legend refers to weighting in Figure 6a PDT_ORIG) for IC93 and Figure 6b for the
factors such as 0.2/0.8 for 2D fingerprints/PDTs. Numerical BAYER database, while 2D fingerprint results using maxi-
results from the hierarchical cluster analysis are summarizedmum dissimilarity selection are included for reference
in Table 6. The combination of 3D information into standard (FP_MAXDISSin Figure 6). These results are summarized
2D fingerprints does not improve average proportipret in Table 7. This approach led to lower coverage rates than
different cluster levels for 100 conformers (Figure 5a); while those obtained by random selections. The BAYER database

2
3

Average P
o
o
3

0.30 4 §

0.20

-m— FPO3T

—e— FPO2t
= FPO4t -& - FPOS5t
—x FPOB —_FPO7t
< FPOBL ——FP_Tan
PDT_Tan —e— RandomAv

500



Use oF 2D AND 3D DESCRIPTORS FORDIVERSE SUBSETS

J. Chem. Inf. Comput. Sci., Vol. 39, No. 6, 199221

Table 6. Combining 2D Fingerprint and PDT Descriptors for e s
Hierarchical Cluster Analysis | 1C93
NCluster FP02t FPO3t FP04t FPO5t FPO6t FPO7t FPO8t s
(a) 100 Conformers 8
60 0.14 020 023 025 027 029 031 .
80 0.18 026 028 032 035 037 042 2
100 025 030 034 038 043 049 052 g%
120 030 036 038 045 049 058 059 Qo
140 034 041 046 054 059 064 0.68 g o FP VAXDISS
160 0.38 047 053 060 064 069 075 & _a_FOT ORG
180 0.42 0.54 0.60 0.64 0.72 0.72 0.79 20 ~&- PDT_CUT85
200 047 060 065 071 074 074 081 10 I
220 058 065 070 073 077 079 084 . T PANDOMLTHEO
240 0.61 0.67 0.73 0.76 0.79 0.84 0.87 50 100 150 200 250 300 350 400 450 500
260 064 071 077 080 085 0.88 0.88 Number of Selected Compounds
280 068 074 079 081 087 089 0.88
300 070 076 079 0.83 090 0.90 0.89 T — D e
320 072 077 082 086 091 090 0.90 o kT -
340 075 078 0.83 087 091 092 0.92
360 078 080 085 091 092 092 0092 80
380 080 084 085 092 093 092 092 3,
400 081 08 088 093 093 093 092 ¢
420 082 088 092 093 093 093 092 o
440 0.83 088 093 093 093 093 092 §so
460 0.84 090 093 093 093 093 092 o,
480 0.86 093 093 093 093 093 092 %
500 0.87 093 094 093 094 093 093 3 —+— FP_MAXDISS
& PDT_ORIG
(b) 10 Conformers 20 b g;,gggg
60 020 026 029 030 030 031 034 10 e PDT_ .
80 026 035 036 041 043 041 042 , —H— PANDOMLTHEO |
100 036 041 044 049 053 052 052 o = o %0 o o0 o 80 o0 100
120 041 048 054 060 062 061 061 Number of Selected Compounds
140 048 054 060 067 069 071 0.71 ) o
160 056 064 069 072 073 074 076 Figure 6. Percent biological classes covered from (a, top) the IC93
180 0.62 0.69 0.72 0.76 0.78 0.78 0.81 database and (b, bottom) the BAYER database, plotted opdis
200 065 075 078 079 080 082 084 Versus the subset populatiorgxis) for selection using various
220 0.70 0.77 0.81 0.81 0.84 0.85 0.86 methods: 2D fingerprints and maximum dissimilarity selection
240 073 080 083 084 087 087 088 (FP_MAXDISS, theoretical random selectioRANDOM_THEO),
260 0.79 0.83 0.86 0.90 0.88 0.88 0.88 and different implementations of the PDT selection method
280 081 084 086 09 083 0.89 090 (PDT_ORIG PDT_CUT85andPDT_CUT90.
300 083 085 087 090 089 0.89 0.90
320 0.84 087 090 090 092 090 090 database, similar to 2D fingerprint-based selections. Thus
340 08 083 090 091 092 090 090 small subsets are dominated by 2D fingerprint sorting and
360 087 089 092 092 092 092 090 n5t3D pharmacophoric key diversity, while no improvement
380 087 091 092 092 092 091 0.90 ! i . ; .
200 087 093 092 092 092 o091 o092 Of2D fingerprintselections isfound. When selecting more
420 089 094 093 092 091 092 092 than 440 structures of the IC93 database or 40 structures of
440 090 094 093 092 092 091 092 the BAYER database, respectively, all biological classes are
460 091 094 093 092 092 091 092 cgyered using 2D fingerprints, while for IC93 78% and for
480 091 094 094 094 092 091 0.93 BAYER 91% : ) .
500 091 093 093 093 092 092 093 o are covered using PDT-based sequential

aTanimoto coefficient used as similarity coefficient. The average
proportion for 55 target classes from the IC93 database is reported.
Individual column headers indicate the weights for 2D fingerprints for
combined descriptors. The PDT weight is-1FP_weight. NClusters,
number of clusters formed.

with 11 different biological classes confirmed those results,

selection. For those studies a cutoff Tanimoto coefficient of

0.85 was used for adding new compounds to the temporary
selection list. Results for other cutoff values (0.80, 0.90, and

0.95 for IC93 and 0.85, 0.90 for BAYER) are also presented

in Table 7 and Figure 6 (IC93PDT_CUT85, PDT_CUT90

with 0.85 and 0.90 as cutoffs; BAYERPDT_CUT85with

a cutoff of 0.85, respectively). In general the subset

which are a consequence of the sequential order of candidatd®DT_CUT85with a cutoff value of 0.85 performs best. For

evaluation, leading to an enrichment by the first molecules
of a data set.

smaller subsets from 1C93<@20), this selection performs
better than a random approach, while this is reversed for for

This led us to evaluate another combined selection larger subsets, suggesting that the sequential selection
strategy. Before sequential selection was applied on the basistrategy with PDT descriptors is not appropriate. Although
of PDT fingerprints, the initial data set was ordered following presorting and PDT selection led to improved results, none
2D fingerprint-based dissimilarity. This corresponds to the of those subsets was superior compared to 2D fingerprints

ChemDuerseimplementatiort? where this sorting is based
on a modified version of 2D atom-pair descriptétsThe
new PDT-based selectioRDT_CUT85in Figure 6, Table

7) with 60 members covers 58% biological classes for the

and maximum dissimilarity techniques.

3.6. Neighborhood Relationship for PDT Fingerprints.
The relationship between structural similarity and biological
activity for PDT fingerprints was investigated using two

IC93 database. A corresponding subset with 15 members nowQSAR data sets with 138 nonpeptidic angiotensin-converting

represents 73% of all biological classes of the BAYER

enzyme ACE inhibitor® and 58 dipeptidic ACE inhibi-
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Table 7. Performance of 2D Fingerprints, PDTs, and Random Selections for Designing Subsets Covering the Biological Properties of the IC93
and Bayer Databa3e

(a) IC93 Database
NComp  FR_.MAXDISS PDT_ORIG PDT_CUT80 PDT_CUT85 PDT_CUT90 PDT_CUT95 RANDOM_THEO

60 61.82 14.55 56.36 58.18 54.55 54.55 45.47
80 65.45 14.55 69.09 67.27 60.00 56.36 51.93
100 78.18 21.82 74.55 72.73 65.45 60.00 57.05
120 81.82 29.09 76.36 74.55 67.27 60.00 61.29
140 83.64 30.91 78.18 78.18 67.27 63.64 64.78
160 85.45 30.91 80.00 78.18 69.09 63.64 67.73
180 85.45 34.55 80.00 78.18 70.91 63.64 70.36
200 89.09 34.55 80.00 78.18 70.91 63.64 72.73
220 89.09 34.55 80.00 80.00 72.73 63.64 74.73
240 89.09 38.18 81.82 80.00 72.73 63.64 76.60
260 89.09 43.64 81.82 81.82 72.73 63.64 78.13
280 92.73 43.64 83.64 81.82 72.73 63.64 79.71
300 94.55 43.64 83.64 81.82 72.73 65.45 81.04
320 96.36 43.64 83.64 81.82 72.73 65.45 82.27
340 96.36 43.64 83.64 81.82 72.73 67.27 83.40
360 96.36 47.27 83.64 81.82 72.73 67.27 84.38
380 98.18 49.09 83.64 81.82 72.73 67.27 85.44
400 98.18 50.91 83.64 81.82 74.55 67.27 86.25
420 98.18 50.91 83.64 81.82 74.55 67.27 87.15
440 100.00 50.91 83.64 81.82 74.55 67.27 87.85
460 100.00 50.91 83.64 81.82 76.36 67.27 88.53
480 100.00 89.20
(b) Bayer Database

NComp FP_MAXDISS PDT_ORIG PDT_CUT85 PDT_CUT90 RANDOM_THEO

15 82 45 73 64 59

20 91 55 73 73 67

25 91 64 82 73 72

30 91 73 82 73 77

35 91 73 91 73 81

40 100 73 91 91 84

45 100 73 91 91 86

50 100 73 91 91 88

60 100 73 100 91 92

70 100 91 100 91 94

80 100 91 100 91 97

90 100 91 100 91 97

100 100 91 100 91 98

@ |ndividual values indicate the percentage of biological classes covered by one or more compounds in a subset.

tors#647 The PDT fingerprint dissimilarity (2 similarity with a shape characteristic for valid descriptors are obtained.
coefficient) for Tanimoto or cosine coefficients and 100 The upper left triangles for all descriptor/similarity coefficient
conformers was computed for each pair of molecules of a combinations are essentially empty, indicating that PDT
data set?®resulting in a data table with pairwise dissimilari- descriptors are able to a certain extent to group structurally
ties and absolute differences of biological activities. Scatter similar molecules for this biological activity. This is in
plots were used to study the descriptor differences on theagreement with results from hierarchical clustering, as both
x-axis versus the biological differences on thaxis (Figure techniques reveal that structurally similar molecules have
7). Such a graph for a valid molecular descriptor should similar activity. However, there are no points in Figure 7
reveal a characteristic shape, which allows one to derive aindicating small structure descriptor changes, as found for
maximum change of the biological activity per change in other valid descriptor&°While for 2D fingerprints with only
the descriptof?Following the similarity principle, any small ~ ca. 1000 bits encoding chemical information very small
physicochemical descriptor difference should correlate to descriptor differences (i.e. large Tanimoto coefficients
only small changes in biological properti€sHence, only 0.90) are observed; for PDTs with 307 020 bits even for
a low number of data points is expected for a valid descriptor structurally very similar dipeptides no pair of molecules with
in the upper left triangle region of this graph. Any point in  a similarity coefficient> 0.5 is observed. Even the introduc-
this upper left triangle corresponds to a pair of molecules, tion of an additional methyl group from glycine to alanine
which is similar in terms of the molecular descriptor, but causes the similarity coefficient to significantly decrease.
which reveals different biological properties. Thus, more structural differences are encoded in this
For both data sets two graphs are generated using therepresentation, leading to those smaller Tanimoto coef-
Tanimoto (Figure 7b,d) or the Cosine coefficient (Figure ficients. Those greater distances do not imply that the PDT
7a,c). The absolute difference of biological activities for each descriptors are less valid than 2D fingerprints, but in
pair of compounds is plotted on thgaxis versus the  combination with any of the commonly used similarity
descriptor differences. For both data sets neighborhood plotscoefficients, the full dynamic range for structural comparison
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A) PDT: Cosine Coefficient using ACE138 B) PDT: Tanimoto Coefficient using ACE138
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Figure 7. Comparison of pairwise absolute biological differences versus PDT fingerprint dissimilarities for two data sets: (a, top left) 138
non-peptidic ACE inhibitors and the cosine coefficient; (b, top right) 138 non-peptidic ACE inhibitors and the Tanimoto coefficient; (c,
bottom left) 58 dipeptidic ACE inhibitors and the cosine coefficient; (d, bottom right) 58 dipeptidic ACE inhibitors and the Tanimoto

coefficient.

between 0 and 1 is not used. This might cause a less cleanumber of conformers to generate PDT fingerprints signifi-
similarity ranking. Significant information to compare two cantly improves performances, suggesting that extensive
molecules might be hidden in noise, when both molecules conformational sampling to account for flexibility introduces
are compared using their 3D pharmacophoric patterns.additional noise into the PDT fingerprint. It is not clear
Furthermore the relevant bioactive conformation is not whether this is a limitation of flexible 3D descriptors or can
known, which might lead to the accumulation of additional be addressed by more sophisticated conformational sampling
noise. techniques. For smaller subsets in maximum dissimilarity
selection, PDTs perform significantly better than a random
4. CONCLUSION approach, while for larger subsets, both perfomances are
| almost similar. Interestingly generating a 2D/3D descriptor
| by combining 2D fingerprints and 3D PDT fingerprints with
ifferent weighting factors led to some combinations with
significantly improved performance. Higher weighting factors
for 2D fingerprints and lower number of conformers for PDT
fingerprints in those fused descriptors improve performances.
Remarkably, some combined descriptors with weighting

The choice of valid molecular descriptors is an essential
problem for designing representative subsets from virtual
libraries and chemical databases. The novelty and interestin
properties of 3D descriptors based on pharmacophore
geometries led to this evaluation of pharmacophoric defini-
tion triplets for selection of representative subsets and for
grouping active compounds into structurally similar classes. X ,
Their performance was studied using maximum dissimilarity factors between 0.5 and 0.8 for 2D fingerprints outperform
methods, hierarchical cluster analysis, and sequential dis-2D fingerprints for smaller subsets, while for larger subsets
similarity selections and compared to 2D fingerprints and € performance is similar to 2D fingerprints. The detailed
random subsets or randomly generated clusters as referencé@n@lysis of the relationship between biological activity and
As any valid descriptor should follow the similarity principle, Structural similarity for two smaller data sets revealed that a
the degree of separation between active and inactive com-lot o_f |mp0.rtant .charactenstlc §|m|lar|ty |nforma_t|on is lost
pounds for a single biological class is important to monitor. © hidden in noise, when a pair of molecules is compared
Furthermore any design should remove redundant com-USing their pharmacophoric patterns only.
pounds, but not biologically informative molecules. Hence  The present study suggests that 2D information by itself
their ability to select representative subsets covering biologi- or in combination with the 3D PDT fingerprints is indis-
cal classes to a certain degree is another quality criterium.pensable for a successful diversity-based library design,

All methods lead to similar results: 2D fingerprints compound selection, and classification, at least for the
perform significantly better than 3D PDTs, while a lower evaluated data sets. Obviously not the entire structural
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information encoded in a PDT fingerprint is relevant for

molecular comparisons, while those descriptors have been

shown to be valid to a certain extent. It might add a much
deeper view into the general problem of 3D versus 2D
descriptors when the outlined validation strategy is applied
to other novel 3D descriptors, recently described in the
literature?*4849 |t is also suggested that for successful
descriptor design any combination of a 2D topological plus
a 3D geometrical approach might be useful.
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