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Application of the Karhunen-Lokve Procedure for 
the Characterization of Human Faces 

M .  KIRBY A N D  L. SIROVICH 

Abstract-The exploitation of natural symmetries (mirror images) in 
a well-defined family of patterns (human faces) is discussed within the 
framework of the Karhunen-L&ve expansion. This results in an ex- 
tension of the data and imposes even and odd symmetry on the eigen- 
functions of the covariance matrix, without increasing the complexity 
of the calculation. The resulting approximation of faces projected from 
outside of the data set onto this optimal basis is improved on average. 

Index Terms-Data compression, data extension, face characteriza- 
tion, Karhunen-Lobe expansion, symmetric eigenfunctions. 

I. INTRODUCTION 
There are many examples of families of patterns for which it is 

possible to obtain a useful systematic characterization. Often, the 
initial motivation might be no more than the intuitive notion that 
the family is low dimensional, that is, in some sense, any given 
member might be represented by a small number of parameters. 
Possible candidates for such families of patterns are abundant both 
in nature and in the literature. Such examples include turbulent 
flows [ l ] ,  human speech 121, and the subject of this correspon- 
dence, human faces. While the techniques applied in this investi- 
gation are well known, we show how natural symmetries of the 
pattern family may be  exploited to obtain improvements in the 
method. Although the subject of this study is that of human faces, 
it might be  used with advantage whenever there are natural sym- 
metries in a family of patterns. 

Current machine ability to  process facial information falls far 

Manuscript received August 4, 1988; revised June 14, 1989. This work 
was supported in part by DARPA-URI Contract N00014-86-KO754. 

The authors are with the Center for Fluid Mechanics, Turbulence, and 
Computation. Division of Applied Mathematics. Brown University. Prov- 
idence, RI 02912. 

IEEE Log Number 893 1 1  18. 

short of natural human capacity to perform the task. Early efforts 
in computer face processing have generally taken feature-based ap- 
proaches, e.g. ,  131-161. A series of studies, summarized in [7], 
concerning the classification of facial profiles has a high success 
rate for relatively small data sets. A more global approach, based 
on the use of an “optimal linear autoassociative mapping,” i.e.,  
linear regression, has been used to recall images using degraded 
or rotated originals as  stimuli [8]. A method known as WISARD 
(Wilkie, Aleksander, and Stonham’s Recognition Device) based on 
neural network principles has also been applied to face recognition 
191. For a detailed review of the literature in computer face pro- 
cessing, see the recent paper by Bruce and Burton [IO]. The em- 
phasis of the current study, as  in a previous study [ I  I ] ,  is on pro- 
viding a reduced parametrization, and consequent data reduction, 
for 2-D digital images of faces. Here, faces are represented by the 
appropriate superposition of macrofeatures which are objectively 
generated on a statistical basis. For  further perspective on the 
methodology, there are studies relating this type of approach to the 
cognitive psychology of face processing [12], 1131. 

The treatment presented here is based on the Karhunen-Loeve 
expansion 1141-[17], although it also goes by other names, e.g. ,  
principal component analysis [ 181 and the Hotelling Transform 
[19]. The idea seems to have been first proposed by Pearson in 
1901 [20] and then again by Hotelling in 1933 1211. The method 
was introduced into the realm of pattern recognition by Watanabe 
in 1965 [2]. The goal of the approach is to represent a picture of a 
face in terms of an optimal coordinate system. Among the opti- 
mality properties is the fact that the mean-square error introduced 
by truncating the expansion is a minimum. The set of basis vectors 
which make up this coordinate system will be referred to as  eigen- 
pictures. They are simply the eigenfunctions of the covariance ma- 
trix of the ensemble of faces. 

Rather than apply this procedure directly, we first extend the 
ensemble by including reflections about a midline of the faces, i.e.,  
the mirror imaged faces. Using this extended ensemble in the com- 
putation of the covariance matrix imposes even and odd symmetry 
on the eigenfunctions. There is no cost in this modification because 
we are not actually doubling the size of the matrix in the eigenvec- 
tor calculation. As shown in Section 111, the symmetry allows the 
problem to be decoupled into two problems, each having the same 
complexity as the problem for the unextended ensemble. As a con- 
sequence of this procedure, the approximation error for pictures not 
included in the extended ensemble is reduced. 

Although we make no attempt to relate the analytical techniques 
to human methods for face processing, we offer the following spec- 
ulation. There is considerable evidence to indicate that the brain 
processes information along parallel pathways. See,  for example, 
the paper by Anderson and Hinton for a discussion and review of 
the neurophysiological evidence [22]. Thus, it is natural to propose 
that an individual recognition task might be built up of several par- 
allel tasks. For instance, we can imagine the eyes, nose, mouth, 
and ears being analyzed in parallel. This might explain why we 
describe an  individual, for example, as  having another person’s 
eyes.  The procedure described in this paper lends itself naturally 
to such a parallel approach. Clearly, for these subportions, the in- 
dividual rates of convergence will b e  faster than for the face taken 
as  a whole. 

Previously we considered a cropping portion of a picture con- 
taining only the eyes and nose [ 111. In the current investigation, 
we look at a cameo of the full face containing the eyes, nose, and 
mouth. As an evaluation of the success of the procedure, we project 
faces from outside of the data set onto the set of optimal basis 
vectors. As discussed in Section VII, this estimate is an upper bound 
for the error, on average. The error, averaged over ten faces, for a 
50-term approximation was 3.68 percent. The  success that this 
small error indicates is supported by the subjective evaluation pro- 
vided by the human eye. 
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11. FORMULATION 
A picture of a face is represented by a scalar function p ( x )  of 

position x = ( x ,  y), with the picture centered on the midline x = 
0. In actuality, we have a digital photograph consisting of a matrix 
p of integral intensities or grey levels p,, ranging from 0 to 255. 
We  consider an extended ensemble of pictures { p'"'(x, y ) }  U 
{ p""( - x ,  y ) } ,  n = I ,  2, . . . , M. 

The average or composite face is then given by 

- I M  
p = ( p )  = - c (p"?l(x, y) + p'"'( -x, y)). ( 1 )  2 M n = 1  

We will say that a picture is even (in the midline) if 

p(x, y)  = pp-x, J). 

v(x, y)  = -p(-x, y). 

( 2 )  

( 3 )  

and odd if 

In keeping with customary practice, we focus on deviations from 
the mean face since this leads to a more efficient approach. Spe- 
cifically. we form a new ensemble of mean subtracted faces: 

@ I f 1 1  = - q 

which we will refer to as  caricatures. The average face and a typ- 
ical mean subtracted picture are shown in Plate 1 .  

( 4 )  

111. ANALYTICAL METHODS 
By taking a distinguishable digital picture of a human face, we 

are. in fact, determining an upper bound on the dimensionality of 
the set of all human faces, namely, the number of pixels in the 
picture. We  have found that 128 X 128 pixels, O (  10'). gives a 
reasonable likeness, but as  an estimate on dimension, this is crude. 
By continuously reducing the spatial resolution of the pictures while 
retaining recognizability, one could improve somewhat on this es- 
timate [23]. 

It is reasonable to conjecture that the dimensionality of the set 
of human faces will be fairly small. Humans, after all,  are proto- 
typical face recognizers, and d o  so with such amazing speed that 
we might conclude that the quantity of information being processed 
is small, possibly in addition to being processed in parallel. 

It seems apparent that the most natural coordinate system for our 
task will be data dependent. Intuitively, the basis vectors should in 
some sense be representative of the members of the ensemble. Such 
a coordinate system, also processing a host of optimality proper- 
ties, is provided by the Karhunen-Lohe expansion where the ei- 
genfunctions are,  in fact, admixtures of the ensemble. Hence, our 
basis will consist of the eigenfunctions of the integral equation 

5 C(x, x ' )  u ( x ' )  dx' = X u ( x )  ( 5 )  

where the kernel is given by 

l M  
C(X, y, x ' ,  y ' )  = - c ( @ l ? ' ) ( x ,  y)  @ l ' z ~ ( . x ' .  y ' )  

2 M n = 1  

+ I$('"( --x, y )  @""( -XI ,  3')) .  ( 6 )  

Within this framework, the coefficients in the expansion are un- 
correlated, and each eigenvalue represents the statistical variance 
of the corresponding coefficient in the expansion. a property we 
will use when evaluating the results of the transformation. As is 
directly verified, we can rewrite C as the sum of an even kernel C,. 
and an odd kernel C,,: 

C ( x ,  x')  = C, . (x ,  x ' )  + C,,(x.  .x') 

c, = - c ( @ ~ ~ ~ l ( x .  y)  + @ ' " I (  -x, y ) )  (@1171(x ' .  y ' )  

( 7 )  

where 

l M  

+ @(" I (  -x', y ' ) )  ( 8 )  

4 M , i = I  

Plate 1 .  From left to right: sample face, average taken over extended en- 
semble, caricature of sample face. 

and 

- @(" I (  - - S I .  y')). ( 9 )  

We  remark that the kernels C,. and C,, are orthogonal and that 
their eigenvalues are even and odd, respectively. The eigenvectors 
of C, belong to the nullspace of C,, and vice versa. Also, if U E 
E ( C , . )  and 2 '  E E ( C , , ) .  then U + 1 '  E E ( C ,  + C ( , )  = E ( C )  where 
E ( C )  represents the eigenspace of the kernel C. In other words, 
E ( C )  can be expressed as the direct sum of E(C, , )  and E ( C , , ) ,  
i .e..  

E (  C )  = E (  C , )  3 E (  C,,) .  

a ~ k ~ ( . L  y) = @ ' " ( x ,  y) + @IA](  -A-. y)  

p ' " ( x ,  y) = @ l L ) ( . x ,  y)  - @ I L 1 (  -x, y). 

( 1 0 )  

(11 )  

(12 )  

If we define 

and 

then it follows that we should consider the following two decoupled 
problems: 

5 Cou, dy' dx' = Xu,, ( 1 3 )  

C , u ,  d y ' d x '  = hu,. (14)  

where 

(15 )  
l M  c,. = - c a " " ( x ,  y) a ' " ) ( x ' ,  y ' )  

4 M f i = I  

and 

(16)  
l M  CO = - c p ' " ' ( x ,  y)  P ( " ) ( X ' ,  y ' ) .  

4 M n = I  

We can view these two problems as equivalent to starting out 
with two separate ensembles { a ' " ' }  and { p ' " ' } ,  k = 1 ,  2, . . . , 
M consisting of even and odd pictures. and then proceeding with 
the two cases independently. We  have shown that the eigenfunc- 
tions of (13) and (14) taken together form the solution set of ( 5 ) .  

The discrete formulation of the problem (13) [or (14)] involves 
computing the eigenvectors of the equation 

( 1 7 )  CUI"' = X ' " ~ u l " '  

where C is now taken to be the discrete version of (15) [or (16)], 
i .e. .  it is a symmetric. nonnegative matrix. Alternatively, we can 
consider the equivalent variational formulation of the above prob- 
lem. To determine the kth eigenvector of (17), we choose u")such  
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that 

is a maximum subject to the side constraints 

(U'", U O " )  = bk,, 1 5 k (19) 
with the usual Euclidian inner product. T o  integrate this, we ob- 
serve that, on average, the members of { a ' " ' }  have their greatest 
component in the direction U('). 

Since the kernels C,, and C, are degenerate, we can represent the 
solutions by 

U,, = c b A p ' k ' ( x ,  y )  (20) 

U ,  = c a k a ' i ' ( x ,  J) 

which, on substitution into (13) and (14), yields the two reduced 
problems 

where L,,,,, = ( a ' " ,  a " )  and P,,,, = ( p ' " ,  p " ) .  Thus, we see that the 
limiting factor in the calculation is that we must solve the eigen- 
vector problem for an M X M matrix where M is the size of the 
unextended ensemble. However, there are techniques to deal with 
ensemble sizes that are too large to be done in one pass; for in- 
stance, see rhe method ofparrifions [24]. Note that the resolution 
of the pictures is not a real constraint since i t  only enters into the 
problem in the form of addimultiplies. Of course, too much reso- 
lution may present a practical problem. 

IV.  DATA ACQUISITION 
The faces used in this experiment are the same as in the previous 

investigation. We use 100 pictures in the ensemble (or 200 in the 
extended ensemble), keeping some ten pictures aside for reasons 
to be discussed later. Each picture was captured and digitized in- 
dividually using an IVS-100 image processor. Faces were lined up 
using a cross-hair overlay displayed on a video monitor. The ver- 
tical line passed through the symmetry line of the face and the hor- 
izontal line through the eyes. The field depth was also adjusted to 
make the facial width for each picture the same. In order to max- 
imize the alignment, the pictures were later scaled and translated 
to fit a template which fixed the interocular distance. However, in 
most cases, the corrections were negligible. See the picture on left 
of Plate 1 for a representative member of the ensemble. 

The pictures were taken under background lighting conditions, 
which varied with the time of day. Errors introduced in this way 
were partially corrected by employing the following normalization 
scheme. A picture can be equivalently viewed as an array of re- 
flectivities r (x ) .  Thus, under a uniform illumination I ,  the corre- 
sponding picture is given by 

+ ( x )  = I r ( x )  (24) 
The normalization comes in imposing a fixed level of illumination 
lo at a reference point x,, on a picture. The normalized picture is 
given by 

P(X) = 4 > + ( X ) / ? ( ~ O ) .  (25)  

In actual practice, we used the average of two reference points, 
one under each eye. each consisting of a 2 X 2 array of pixels. 

The ensemble was deliberately chosen to be homogeneous, i . e . ,  
it consists of Caucasian males with no facial hair and eyeglasses 
removed. Otherwise, it is a fairly random selection of Brown Uni- 
versity students and faculty who were passing through the Engi- 
neering Building, possibly a little too slowly. In the present inves- 
tigation, we consider an oval-shaped portion of the face containing 

essentially the eyes, nose, and mouth. The oval picture fits into a 
square of dimension 9 1 X 5 1. W e  eliminated most of the hair as it 
significantly reduced the accuracy of the expressions. In any case, 
it wjould be possible to carry out a similar procedure on  the com- 
plement of the portion of the face that was kept, and then fit the 
two together later. 

V.  RESULT 
In Plate 2 ,  the first nine eigenpictures (ordered by the size of 

their corresponding eigenvalues, starting with the largest, left to 
right and top to bottom) are shown. They are displayed by mapping 
the computed values to integers in the interval [0, 2551. The back- 
ground has a fixed grey scale value of 128 and represents the zero 
level of the eigenpicture. Portions lighter than this are positive; 
portions darker are negative. Note also that the distinction between 
positive and negative is somewhat arbitrary since it is always per- 
missible to multiply an eigenvector by a scalar, e . g . ,  - 1. 

It is possible to view the method as extracting facial features, at 
least in a statistical sense. For example, the first eigenpicture has 
a large extremum on the forehead, which is a direct result of the 
wide variation in the amount of hair present in the cropped pic- 
tures. Analogous statements are clearly possible for the other ei- 
genpictures. 

It is also interesting to consider the distribution of the eigenval- 
ues corresponding to even and odd eigenpictures. Not surprisingly, 
the majority of the eigenpictures (five of the first six) corresponding 
to the largest eigenvalues are even. In fact, i t  might be regarded as 
surprising that the third eigenpicture is odd in view of the basic 
symmetrical nature of a human face. This result is very probably 
due to asymmetrics in the background lighting that occurred during 
the picture acquisitions. Examining the coefficients of the eigen- 
pictures for any given face will give a relative measure of its sym- 
metry. For  example, if there is a relatively large coefficient corre- 
sponding to eigenpicture number three, chances are the face is more 
asymmetrical than average. 

It is interesting to compare the similarities and differences o f t h e  
first several eigenpictures for the case with imposed symmetry to 
the case with the unextended ensemble. In Plate 3, the first five 
eigenpictures for both the extended (top row) and unextended (bot- 
tom row) ensembles are shown. They are displayed in black (pos- 
itive) and white (negative) to emphasize their symmetry; however, 
this does lose the amplitude information apparent in Plate 2 .  W e  
see remarkable similarities between the two sets. Most striking is 
that the eigenpictures of the original ensemble have nearly even 
and odd symmetries (compare the third eigenpicture in the top row 
to the fifth eigenpicture in the bottom row). The modification of 
extending the data through symmetry considerations might be 
thought of as directing the method where it is already heading. In 
other words, it could be viewed as an acceleration of convergence. 

VI. EICENPICTURE RECONSTRUCTION 
Any picture in the ensemble can be represented exactly as  the 

sum of the eigenpictures. Specifically, for any member of the pop- 
ulation, we can write 

where 

a,, = (U"". p - 0). (27)  

We next look at how much error is introduced by truncating thi 
series. i .e. .  we consider the approximation 

(28 ~ ~ F + = P,v 

where 
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Plate 2. First nine eigenpictures, in order from left to right and top to 
bottom. 

Plate 3. Binary mapped eigenpictures for both extended (top row) and 
unextended (bottom row) ensembles. 

One can quantify the error of the approximation as 

E,w = ll(0 - ( O N l l / l l ( O l l  

IIPII = (P3 (0) ’ 

(30)  

where the norm is defined by 
I / 2  

It measures the magnitude of the error vector, normalized by the 
vector representing the face that is being reconstructed. This mea- 
sure is not supposed to be equivalent to the human eye in deter- 
mining the quality of a reconstruction. However, the goal is still 
to form a recognizable reconstruction. See Plate 4 for pictures of 

Plate 4. Approximation to the exact picture of caricature (lower right cor- 
ner) using 10, 20, 30, 40, 50 eigenpictures. The original picture is not a 
member of the ensemble. 

the reconstructions of the caricature of a typical face outside of the 
ensemble for N = IO,  20, 30, 40, 50. In Plate 5 ,  two more typical 
approximates of data from outside of the original extended ensem- 
ble are shown. The approximation for N = 50 (left) is compared 
to the exact picture (right) in each case. 

The convergence error E,, plotted versus N ,  for the approxi- 
mation shown in Plate 4 is given by the solid line in Fig. 1 .  The 
dashed curve represents the error averaged over a set of ten faces 
chosen at random from outside of the ensemble. In Fig. 2, we com- 
pare the errors, again averaged over ten faces projected from out- 
side the data set, for the approximations using the symmetrical ba- 
sis (lower curve) and the nonsymmetrical basis. At N = 50, the 
extended basis gives an error of 3.68 percent compared to  3 .86  
percent for the unextended set. 

In addition, we compute the fraction of the total variance con- 
tained in the first N terms q, as a function of N where 

N c A“’ 

c A“’ 

/ = I  
qN = r .  

I =  I 

The first ten terms contain 82 percent of the variance, while by N 
= 50, we are up to 95 percent (see Fig.  3). W e  also plot A(n’ /Amax 
versus n in Fig. 4. Here, we see that the global Karhunen-Lokve 
estimate of the dimensionality (the value of the index i for which 
A0”/Amax = 0.01) of the set is about 21. 

VII. ERROR ESTIMATION 
One must exercise some care in making statements about the 

error of the approximation. Within the framework of finite dimen- 
sional vector spaces, it is possible to determine meaningful upper 
bounds on the error estimate of our truncated expansion even if our 
ensemble of pictures is too small. W e  begin by assuming that V is 
a finite dimensional vector space which contains all human faces. 
It is reasonable to assume that the dimension of V ,  say N ,  is finite 
in view of our  earlier remarks (see “Resul ts”) .  However, we d o  
not restrict the total number of faces M to be finite. We  will con- 
sider an example to be too small if it does not span V .  Let the space 
spanned by an ensemble of size M, V,, have dimension D, 5 N .  
If our ensemble is too small, then estimates for both the accuracy 
of the approximation for a member of the ensemble and the total 
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Plate 5. Fifty-term approximations of two sample caricatures taken from 
outside of the extended ensemble. In each case. the exact caricature is to 
the right of the approximation. 

t 
0 . 1 5 0 ~ .  . . . I .  1 . .  I 3 1 . .  I . .  . . I  

50 100 150 200 0.000 " " I " ' ' I " " I " " 1 
ltU3 

Fig. 1 ,  E,v versus N for approximation shown in Plate 4 shown as contin- 
uous curve. Dashed curve corresponds to the error averaged over ten 
faces taken from outside of the ensemble. 

variance contained in the first k terms are going to be too optimis- 
tic. Clearly, if we choose M << N ,  the errors for members of the 
ensemble will have no meaning, even though they look very at- 
tractive. However, if we consider elements of V not wholly con- 
tained in V,, we can make some meaningful statements. 

Let $ E V ,  but II/ $ V,,, and let 6 E V,. Also, let P y  be the 
orthogonal projection onto V,, k 5 M .  Define 

el(M; k )  = E<",,,\l$ - PY4L 
CAM; k )  = &,(I6 - P Y ~ I I  

where E ,  denotes expected value over  the set V,, and cV, is the 
space spanned by members of the ensemble in V ,  but not in V,. 
W e  state the following theorem without proof. 

Theorem: I) For any $xed k 5 M ,  e , ( M ;  k )  decreases mono- 
tonically to a constunt I , ( k )  us M increases, 2 )  similurly, e ? ( M ;  k )  
increases monotonically to 1 2 ( k ) ,  3 )  l , ( k )  = l , ( k ) .  

The above theorem has a useful interpretation. Namely. we can 
obtain an upper bound for the average error even if our ensemble 
size is too small. In other words, on average, we will do  no worse 

f 2 o.*l 
0.4 

L .  . . I  . . . . I . . " I " " J  
50 100 150 200 

EI6ENVALUE I M U  

Fig. 3 .  Fraction of total variance 4% versus number of terms N in expan- 
sion. 

t 
0.3 

0.1 

10 20 30 40 50 0.0 

UQENVALUE INoEx 

Fig. 4. Eigenvalues normalized by the maximum eigenvalue versus index. 

than our upper error estimate found by projecting faces f-rom out- 
side of the ensemble. Also, as the ensemble size increases, the 
error will improve. up to the point where M is large enough. 

VIII. DISCUSSION 

Part of our discussion has centered around the notion of data 
extension using the natural symmetry of a pattern. We showed why 



108 I E E E  TRANSACTIONS O N  PATTERN ANALYSIS A N D  MACHINE INTELLIGENCE. VOL. 12. NO. 1, JANUARY 1990 

the resulting eigenpictures are necessarily even and odd.  Patterns 
are now represented in terms of  a basis possessing more structure, 
thus providing further characterization. Also, in hindsight, w e  can 
see that the eigenpictures corresponding to  the unextended ensem- 
ble are nearly even and odd a s  well, a rather surprising result. In 
light of  this fact and the improved approximations, we  view the 
modification a s  beneficial. 

Another theme of  this correspondence has been data compres- 
sion. W e  see that w e  can replace a 91 X 51 array by a 50-term 
expansion and retain a reasonable likeness, roughly a 100: 1 
compression ratio. This  number of  terms should decrease further 
still given a larger ensemble size in view of  the theorem in  Section 
VII.  This  conclusion is drawn from the fact that members of  the 
ensemble have more accurate expansions than projections from 
outside of  the ensemble. 
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Correction to “Image Computations on Meshes with 
Multiple Broadcast” 

Due to  a very unfortunate compositor’s error not noticed by IEEE 
Staff, the  name of the first author of  the paper, “Image Computa- 
tions on Meshes with Multiple Broadcast,”’ was misspelled in the 
biography which was sent in  a separate mailing. The  correct spell- 
ing is V .  K.  Prasanna-Kumar. 

W e  sincerely regret this error. 
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