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Abstract

Microarray technologies, which enable the simultaneous measurement of all RNA transcripts in a ce
spawned the development of algorithms for reverse-engineering transcription control networks. In this art
classify the algorithms into two general strategies: physical modeling and influence modeling. We disc
biological and computational principles underlying each strategy, and provide leading examples of each.
discuss the practical considerations for developing and applying the various methods.
 2005 Elsevier B.V. All rights reserved.

PACS: 87.16.-b; 87.16.Ac; 87.16.Xa; 87.16.Yc; 87.17.-d; 87.17.Aa; 87.80.Vt

Keywords: Gene networks; Reverse-engineering; Machine learning; Transcription control; Gene regulation

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Gene expression in a nutshell . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 67

2.1. Mechanisms of RNA regulation . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 68
2.2. A simple model of transcription . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 69

3. Reverse-engineering: an introductory example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Two general reverse-engineering strategies . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 72
5. The physical strategy: identifying TF interactions. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 73
6. The influence strategy: inferring gene networks. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 75

6.1. Differential equation models . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

* Corresponding author.

E-mail address: tgardner@bu.edu(T.S. Gardner).

1571-0645/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.plrev.2005.01.001

http://www.elsevier.com/locate/plrev
mailto:tgardner@bu.edu


66 T.S. Gardner, J.J. Faith / Physics of Life Reviews 2 (2005) 65–88

7
0

4
5

nter
mple of

cell’s
ped
hich are

ng after
gineer the

aches
remains
ta; they
d and
nificant
nd the

cells with
n (concen-
escribes
alysis and
6.2. Boolean network models . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.3. Bayesian network models . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.4. Association networks . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 82

7. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 86

1. Introduction

One decade ago, DNA microarray technologies[1–3] were developed which enabled an experime
to simultaneously measure the concentration of thousands of RNA transcripts from a single sa
cells or tissues. Such data offered the possibility to infer, or “reverse-engineer,” a model of a
underlying transcription control systems (Fig. 1). Engineers and scientists have previously develo
reverse-engineering techniques in the fields of computer science, engineering, and statistics, w
respectively called machine learning, system identification, and statistical learning. Hence, not lo
DNA microarray technology emerged, researchers proposed plausible approaches to reverse-en
mechanism of transcription control in cells[4–10].

Continuing research[11–15]has dramatically expanded the types of reverse-engineering appro
and their application to experimental data. Still, the development of reverse-engineering methods
a challenging and active area of research. Challenges principally arise from the nature of the da
are typically noisy, high dimensional, and significantly undersampled. Moreover, well-understoo
standardized benchmark systems for validating algorithm performance are not available. Thus, sig
questions still remain regarding experimental design, the reliability of the predicted networks, a
utility of various approaches for particular applications.

Fig. 1. The general strategy for reverse-engineering transcription control systems. (1) The experimenter perturbs
various treatments to elicit distinct responses. (2) After each perturbation, the experimenter measures the expressio
tration) of many or all RNA transcripts in the cells. (3) A learning algorithm calculates the parameters of a model that d
the transcription control system underlying the observed responses. The resulting model may then be used in the an
prediction of the control system function.
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Fig. 2. Gene expression is a three step process. (1) A region of DNA (a gene) istranscribed into RNA. (2) RNA is translated
into a chain of amino acids. (3) The amino acid chain isfolded into its functional 3-dimensional protein structure. Regulat
of cell dynamics can occur at any of these steps.

In this article, we review promising examples of several classes of algorithms for reverse-engin
transcriptional control systems using RNA transcript measurements. We group these approaches
general strategies: “physical” approaches, which seek to identify the molecules that physically
RNA synthesis, and “influence” approaches, which seek to model causal relationships betwee
transcripts. The causal relationships may or may not correspond to true molecular interactions
both strategies, similar computational techniques may be applied, including linear regression, B
inference, Bayesian learning, correlation and mutual information.

We begin with a review of the fundamental concepts of gene expression related to reverse-eng
methods. We then provide an introductory example of reverse-engineering applied to transcription
tion. We next discuss the principal reverse-engineering strategies developed to date. Finally, we c
with brief comments on the practical considerations for developing and applying the various meth

2. Gene expression in a nutshell

Gene expression refers to the process by which cells produce proteins from the instructions e
into DNA [16]. In essence, one may consider it to be a three step process (Fig. 2): first, specialized
proteinstranscribe a region of DNA (a gene) into an RNA molecule (also called atranscript); second,
additional proteins process the RNA transcript andtranslate it into an polypeptide chain; third addition
proteins fold and modify the polypeptide chain into a biochemically active protein. Regulatory mol
can control the concentration and form of the product of each step. These regulators are usua
formed proteins, but any of the intermediate products (RNA, polypeptides, or proteins) also may
regulators of gene expression.

Reverse-engineering techniques have principally focused on decoding the mechanisms of tr
tion control, the first step in gene expression. This is because DNA microarray technology has
researchers to efficiently measure the concentration of all RNA transcripts in a cell, making su
abundant. Measuring peptide, protein and metabolite regulators of gene expression is genera
difficult, and such data are not often available. But with improved technologies for protein and m
lite measurement, reverse-engineering techniques may be extended to the second and third step
expression.

Microarray technology consists of glass slides or silicon chips containing thousands, or millio
DNA probes, each of which is complementary to a specific RNA species in the cell[1–3]. Each probe can
bind to, and quantitatively measure, the concentration of an individual RNA species. Due to var
in probe sensitivities, the technology can reliably measure only relative changes in RNA concent



68 T.S. Gardner, J.J. Faith / Physics of Life Reviews 2 (2005) 65–88

baseline
, but we

dation
rading
mode of

otein
ecog-
gion
elon-
ngation
RNAP

he ter-
city of

the DNA
copy of
a motif
proteins

s of the
Thus, one reports RNA measurements as concentration ratios for each transcript relative to its
state. For example, we can determine that two different transcripts both double in concentration
will not know if one of the two transcripts is more abundant than the other.

2.1. Mechanisms of RNA regulation

RNA levels in a cell can be controlled via the rate of synthesis or the rate of elimination (degra
or modification to another form). The rate of degradation of RNA can be modulated by RNA-deg
proteins. One usually assumes that RNA degradation is nonspecific, and thus, not a dominant
control. There are exceptions, however, such as the mazF protein inE. coli [17–19], which appears to
degrade specific RNA species under stress conditions.

RNA synthesis (transcription) is controlled by the activity of RNA polymerase (RNAP), the pr
complex that reads the DNA and copies it into RNA. Transcription of DNA begins when RNAP r
nizes and binds to apromoter, which is a control sequence of DNA upstream of the transcribed re
(Fig. 3a). After binding, RNAP opens the DNA double helix and slides along the DNA sequence,
gating the RNA message by adding ribonucleotides that match the DNA sequence. Transcript elo
proceeds until the RNAP encounters a stop sequence in the DNA. Factors that bind directly to the
complex can modulate the binding rate, the binding specificity, the rate of RNA elongation, and t
mination of elongation. Examples include the ppGpp molecule, which alters the binding specifi

Fig. 3. (a) RNA transcription begins when an RNA polymerase (RNAP) binds to upstream recognition sequences on
sequence (promoters). The two strands of DNA are separated and RNAP moves along the DNA, transcribing an RNA
it until a stop region on the DNA knocks the polymerase off. (b) Some genes have an activator protein that binds to
(OA) near the promoter. This protein increases the affinity of RNAP for the promoter. (c) Other genes have repressor
that bind to motifs (OR) in the promoters. Repressor proteins can act by blocking access of RNAP to important region
promoter.
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RNAP under stress conditions in many microbes[20], and the N protein, which alters the terminati
site of RNAP in bacteriophage lambda DNA[21].

Transcription can be controlled also by an auxiliary protein called atranscription factor (TF). A TF
binds to a short, unique DNA sequence, called amotif, in or near the promoter (Fig. 3b). When bound to
its motif in a promoter, a TF can recruit RNAP to atypical promoters, or block the binding of RNA
promoters. Because this form of regulation is highly specific to particular RNA transcripts, it appe
be the predominant form of RNA regulation in cells.

2.2. A simple model of transcription

We can obtain a simple model of transcription by considering the RNAP (P ), the DNA promoter (N ),
and the RNA transcript (S) as chemical species in a well-stirred environment. Applying the principle
rate-law kinetic modeling, we obtain:

(1)P + N
k+1

�
k−1

PN
k+2→P + N + S,

wherek+1 andk−1 describe the on and off rates of RNAP binding, andk+2 reflects the transcript elonga
tion rate. Under the assumption thatk+2 is small, or the assumption that the concentration of prom
(N ) is much smaller than the concentration of RNAP (P ), we can write a differential equation for tra
scription as:

(2)
ds

dt
= Vmp

p + Km
− δs,

where the lowercase letters denote the concentrations of the respective species,Vm = k+2 n is the maxi-
mum rate of synthesis,Km = (k−1 + k+2)/k+1 is the Michaelis constant, andδ accounts for a constan
rate of degradation of RNA transcript. More formally, the above assumptions create fast and slo
scales in the reaction, and Eq.(2), describes the slow dynamics.Km describes the activation thresho
for p. For concentrations ofp aboveKm, the rate of synthesis begins to saturate at its maximum v
Vm.

Given the small number of reacting molecules, the omission of several other chemical species i
in transcription, and the inhomogeneous nature of the cell contents, Eq.(2) is an imperfect model. Nev
ertheless, it has proven effective for capturing qualitative and quantitative features of gene exp
[22–31].

We can also incorporate regulatory control into the rate-law model of transcription. For exa
RNAP does not recognize some promoters without the help of an activating TF that first binds
promoter (Fig. 3b). This reaction scheme leads to the following modification of Eq.(2):

(3)
ds

dt
=

(
aα

aα + Ka

)
Vmp

p + Km
− δs,

wherea denotes the concentration ofA, the activator, andKa is the activation threshold forA. The
activator simply modulates the maximum rate of transcription. The parameterα in the equation is a co
operativity exponent. It is determined by the number of copies of the binding motif forA in the promoter.
If M is the number of binding motifs that must be occupied byA in order to recruit RNAP, thenα = M .
a a
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Transcription from promoters may also be inhibited by repressor TFs. Multiple forms of inhibitio
possible. A common one is competitive inhibition, which means that the binding of the repressor
the RNAP are mutually exclusive (Fig. 3c). For competitive inhibition, Eq.(2) is modified as:

(4)
ds

dt
= Vmp

p + Km(1+ rβ/Kr)
− δs,

wherer denotes the concentration of the repressor,R, andKr is the inhibition threshold forR. The
repressor can be viewed as modulating the activation threshold,Km, of the promoter by RNAP. Th
parameterβ, is similar toα, and is determined by,Mb, the number of copies of the binding motif forR

in the promoter.

3. Reverse-engineering: an introductory example

Identifying the binding motifs of TFs in promoters is a principal challenge in reverse-engineeri
mechanisms of transcriptional control. Bussemaker, et al. introduced a promising strategy for com
RNA expression data and genome sequence data to identify the binding motifs of transcription fa
promoters[11]. The method assumes that the rate of transcription from a particular promoter will r
the number of binding motifs for a TF in that promoter. The method begins by exhaustively enum
all possible binding motifs of a given length of nucleotides, and then counting the number of co
each possible motif in every promoter in a cell. Most of these putative motifs are not real. True mo
distinguished because the copy number of true binding motifs in a promoter will correlate linearl
the logarithm of RNA levels measured using a microarray.

The rationale for the approach follows from the model of transcription that we developed in the
ous section. Under steady state expression conditions (i.e., ds/dt = 0), the measured RNA level provide
an estimate of the rate of synthesis. For example, Eq.(2) gives:

(5)s =
(

1

δ

)
Vmp

p + Km
.

We assume that the TF concentrations are far from saturating a promoter at its maximum rate
scription, e.g.,aα < Ka andrβ > Kr(p/Km +1). Near saturation, RNA measurements are uninforma
because changes in TF activity or motif copy number will have little influence on transcription; thu
motif-finding method will work poorly in this regime. With the saturation and steady state assump
we can write Eq.(3) for activation as:

s = aα

(
1

δKa

Vmp

(p + Km)

)
,

and Eq.(4) for repression as:

s = r−β

(
Kr Vm p

δKm

)
.

The quantities inside the parenthesis are constant. Taking the logarithm gives:

logs = α log(a) + constant,
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for activation, and

logs = −β log(r) + constant,

for repression. We recall thatα = Ma andβ = Mb. Assuming that both repression and activation
simultaneously possible in a single promoter, we obtain a general expression relating motif copy
to the logarithm of RNA levels:

(6)logs =
∑

i

γiMi + γ0,

whereMi is the copy number of motifi in the promoter,γi represents the log concentration of the Ti
in the cell, andγ0 is a constant.

The Bussemaker algorithm determines the coefficients,γi , of Eq. (6) by regressing the copy numb
of each motif in each promoter against the log RNA level measured for each promoter in a pa
experiment. (In practice, one uses the logratio of RNA relative to a reference state.) The algorith
assumes that the combination of motifs providing the most significant regression fit is the true
active motifs in the measured experiments.

Selecting the best combination of motifs can be a computationally hard task. The number o
tive binding motifs in promoters is large, and only a small subset of them are true motifs. For ex
more than 20 000 motifs of 7 nucleotides exist. The Bussemaker algorithm may detect on the o
10 of them as active in one experiment. Exhaustive scoring of every subset of motifs is infeasib
to the huge number of combinations. Thus, the algorithm uses an iterative, greedy search for t
fitting combination. In each iteration, the algorithm fits motifs one at a time and selects the best
motif. It then subtracts the influence of that motif from the expression data and fits another m
the residual signal. The algorithm repeats the process until the addition of motifs does not impr
fit. This search scheme assumes that the contribution of each motif to the RNA expression is in
dent.

Due to the size and complexity of transcription control networks and limitations on the amo
experimental data, a combinatorial search problem like that encountered in the Bussemaker a
is almost universal in reverse engineering approaches. Researchers have applied several str
address the problem, including heuristic strategies like the Bussemaker approach, Monte Carlo
[32,33], dimensional reduction[34–36], and prior information[13,37]. Selection of an optimal strateg
for each approach remains a challenge.

The success of the Bussemaker approach depends on a number of assumptions regarding the
of transcription. Most notably, it relates the influence of combinations of TFs as a log-linear func
RNA levels. Such a highly constrained model may lead to errors in predictions. Indeed, the aut
the study point out that the log-linear model captured at best 30% of the signal present a test
of yeast expression experiments. More complex nonlinear models of transcription may be more s
One such approach[14] which also a captures location and orientation features of binding motifs, i
scribed below. Despite it’s limitations, the Bussemaker method successfully analyzed yeast sequ
expression data; it identified many of the known binding motifs present in previously-studied prom

Another limitation of the Bussemaker approach is that it cannot determine which TFs bind
discovered motifs. One strategy to overcome this problem requires that RNA levels are measur
directly perturbing the expression of a TF[38]. The most significant binding motifs that the Bussema
algorithm detects in that experiment are assumed to be those bound by the perturbed TF. In
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experimental data, this method typically ranked the true binding site of a TF as the first or secon
significant identified motif. Thus, it may provide a means to systematically determine the network
regulators and their binding motifs in a cell.

4. Two general reverse-engineering strategies

The Bussemaker approach is an example of a “physical” strategy[39] for reverse-engineering tran
scription regulation using RNA expression data. The physical approach seeks to identify the
factors that regulate transcription, and the DNA motifs to which the factors bind. In other words, it
to identify true physical interactions between regulatory proteins and their promoters. An advan
this strategy is that it can reduce the dimensionality of the reverse-engineering problem by res
possible regulators to TFs. It also enables the use of genome sequence data, in combination w
expression data, to enhance the sensitivity and specificity of predicted interactions. The limitation
approach is that it cannot describe regulatory control by mechanisms other than transcription fac

A second strategy, which we call the “influence” approach, seeks to identify regulatory influenc
tween RNA transcripts. In other words, it looks for transcripts that act as “inputs” whose concen
changes can explain the changes in “output” transcripts (Fig. 4). Each transcript may act as both an inp
and an output. The input transcripts can be considered the regulators of transcription. By const
such a model does not generally describe physical interactions between molecules since transc
rarely controlled directly by RNA (and never by messenger RNA, which is the type of RNA pred
nantly measured by DNA microarrays). Thus, in general, the regulator transcripts may exert the
indirectly through the action of proteins, metabolites and effects on the cell environment (Fig. 5). Never-
theless, in some cases, the regulator transcripts may encode the TFs that directly regulate tran
In such cases, the influence model may accurately reflect a physical interaction.

An advantage of the influence strategy is that the model can implicitly capture regulatory mech
at the protein and metabolite level that are not physically measured. That is, it is not restricted
scribing only transcription factor/DNA interactions. As described in the section on differential equ
models, an influence model may be advantageous when trying to predict the global response of th

Fig. 4. Gene network models are represented as directed graphs describing the influence of the levels of one set of
(the inputs) on the level of another transcript (the output). One usually assumes that networks are sparse, i.e., only a sm
of transcripts act as inputs to each transcript. The relation between inputs and outputs is specified by an interaction funfi ).
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Fig. 5. Biological networks are regulated at many levels. (a) shows an example network where protein transcription fact
and green shapes) influence the expression of different transcripts (brown lines). One protein is a membrane-bound
transporter. The metabolite it imports (brown triangle) binds one of the transcription factors enabling it to bind DN
initiate transcription. (b) A gene network model of the real network in (a). Because the model is inferred from measu
of transcripts only, it describes transcripts as directly influencing the level of each other, even though they do not p
interact. (For interpretation of the references to color in this figure, the reader is referred to the web version of this arti

stimuli. The limitation of this approach is that the model can be difficult to interpret in terms of the
ical structure of the cell, and therefore difficult to integrate or extend with further research. Moreov
implicit description of hidden regulatory factors may lead to prediction errors.

5. The physical strategy: identifying TF interactions

Here, we describe two additional physical approaches. The objective of both, like the Buss
approach, is to identify the binding motifs of transcription factors. One of the first methods to acco
this task was introduced by Tavazoie and colleagues[10]. The method assumes that transcripts contro
by the same TFs will exhibit similar expression changes under a variety of experimental cond
With a sufficient number of RNA expression experiments, the method clusters transcripts based
similarity of their changes across all the experiments. Then the method applies a motif-finding alg
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to identify homologous DNA sequences in the promoter regions of the clustered transcripts. The a
assumes that homologous DNA sequences are probable TF binding motifs.

The authors of the method applied it to a data set of 15 RNA expression profiles me
over two cell cycles of synchronized yeast cultures. Each profile measured the expression o
than 6000 yeast transcripts. The algorithm used ak-means algorithm with a Euclidean distan
metric to cluster the expression profiles for 3000 of the transcripts that exhibited significa
pression changes. The authors then applied the AlignACE[40] algorithm to identify putative TF
binding motifs. The method found 18 motifs among 12 of the 30 clusters. Seven of the
tifs corresponded to previously validated TF binding sites. The others were potentially nove
tifs.

One limitation of this method is that transcripts sharing a motif may be regulated similarly unde
conditions and differently under other conditions due to the presence of different combinations of
in their promoters. This may explain the failure of the approach to identify significant motifs in ma
the clusters. One possible solution to this problem is to use condition-specific clustering[41] in which
genes may be grouped together in one subset of conditions, but also may be grouped in other
under other conditions. Thus, genes may participate in more than one cluster. Each cluster is mo
to share common binding sites.

Another limitation of the Tavazoie method, and the Bussemaker method, is that they accou
for the presence and copy number of motifs in the promoter region. In many promoters, a b
motif for a transcription factor may exist but have no regulatory function. Thus, location, orient
methylation and other properties of a motif may also influence the regulatory effect of TFs on th
get promoters. A method to partially account for such properties was recently introduced by Be
Tavazoie[14]. This method may also overcome the clustering issues related to condition-specific
tion.

The Beer and Tavazoie begins the same way as the Tavazoie method; it clusters transcripts a
to the similarity of their expression profiles across many experimental conditions, and then ide
the overrepresented motifs in each cluster using the AlignACE algorithm. The method then fi
transcripts that contain the identified motifs in their promoter regions, even if they are not in the o
cluster. It determines the position, orientation, order, spacing and degree of homology of these
in each promoter. It then learns a Bayesian network model that describes the influence of these
properties on transcript expression.

In the approach, motif properties are encoded as binary variables, e.g., the motif exists or does
the spacing is less than 50 bases or more than 50 bases, etc. These binary variables are then
parent nodes (i.e., regulator variables) in the Bayesian network model. The parent nodes that bes
the expression data are then learned through a iterative, greedy search procedure. In each itera
variable is tested and the most predictive variable is added to the model until the overall score
model no longer improves. The model score is the probability that the model is correct for the ob
data and is computed using Bayes theorem with equal prior probabilities for all models. More de
Bayesian network methods are provided below.

The approach successfully identified many of the known regulatory motifs in yeast as well as
new ones. More importantly, it succeeded in determining which transcripts were influenced by the
and the regulatory logic underlying the motif properties. One result from their study (Fig. 6) shows the
correlation of all transcripts containing two TF motifs in their promoters. Promoters with the mo
specific locations show dramatically higher correlation of expression. Using five-fold cross-valid
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Fig. 6. Dependence of gene expression on motif position. Reproduced from Beer and Tavazoie[14]. The green curve show
a histogram of correlation coefficients for all pairs of transcripts that contain both the RRPE and PAC motifs in th
moter. The purple curve shows a histogram of correlation coefficients for just those transcripts that contain PAC in w
first 140 nucleotides and RRPE within the first 240 nucleotides of the promoter. Correlation of transcript expression
marked increase, which indicates that position has a significant influence on the regulatory effect of transcription fact
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

the authors showed that the regulatory logic identified by their algorithm could predict the expr
pattern for 73% of the 2587 transcripts examined. In addition, it showed a marked improvement o
predictive capabilities of the Bussemaker algorithm.

6. The influence strategy: inferring gene networks

The influence strategy for reverse-engineering seeks a model in which transcripts serve as re
inputs that control the rate of synthesis of other RNAs. This type of model is sometimes calledgene
regulatory network or agene network. Gene network reverse-engineering algorithms do not use or m
protein and metabolite data. Since the concentrations of many transcription factor RNAs do not c
with the activity of their respective protein products[42,43], a gene network model does not usua
describe physical relationships between regulators and transcripts[12,42,43]. Nevertheless, gene netwo
models provide a global view of gene regulation that is not restricted to TF/promoter interactions
can implicitly capture the protein and metabolite factors that may influence gene expression. Such
can provide valuable insight into the important regulators of cell responses. The models are also
in predicting transcription responses to new cell treatments.

In general, one can represent a gene network model as a directed graph (Figs. 4 and 9a). Depending
on the reverse-engineering approach used, one can describe this graph mathematically as a s
differential equations, as a Boolean network, as a Bayesian network, or as an association netw[44].
The representations provide different degrees of simplification of cell regulation, lend themse
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different computational strategies, and may suitable for different applications. We will discuss th
order.

6.1. Differential equation models

One can describe a gene network as a system of differential equations. The rate of change in
tration of a particular transcript,xi , is given by a nonlinear influence function,fi , of the concentration
of other RNA species.

(7)
dxi

dt
= fi(x1, . . . , xN),

whereN is the number of transcripts in the network. In general, only a small subset of all RNA sp
regulate a particular transcript. In other words, the networks are sparse. The objective of reverse e
ing is to determine which RNA species regulate particular transcripts, and the parameters of the fu
relating them.

An algorithm usually presupposes the form of the influence functions,fi . Researchers have studi
various functions, including sigmoidal functions[9] and linear functions[7,8,12]. Thus far, the linea
functions have proven to be the most versatile in the analysis of experimental data sets[8,12]. In part,
this is due the simplifying power of linear functions; they dramatically reduce the number of para
needed to describe the influence function and avoid problems with overfitting. Thus, the amount
required to solve a linear model is much less than that required by more complex nonlinear mode
advantage is crucial in light of the high cost of experimental data and the high dimensionality
systems. However, this gain in experimental efficiency comes at the cost of placing strong constr
the nature of regulatory interactions in the cell. The restrictions may lead to errors in the network
and may restrict the conditions for which the model accurately describes the regulatory network.

Algorithms can infer the influence functions using time-series RNA expression data or stead
data. If the algorithm uses time-series data, it must estimate the rates of change of the transcriptsx/dt)
from the series. This can be problematic because calculating the derivative can amplify the meas
errors in the data. Alternately, one can convert the model to a discrete dynamical system[34,45], which
does not require calculation of the derivatives. However, after inferring the model, one may n
transform it back to the continuous-time domain. On the other hand, if the algorithm uses stead
data, dx/dt = 0, and the algorithm does not need to compute derivatives.

We illustrate the linear approach with an algorithm which we developed and applied successfu
small network of transcripts in the bacteriumE. coli [12]. In our method, called Network Identificatio
by multiple Regression (NIR), the rate of change of a transcript is represented as a weighted su
levels of the other genes in the network:

(8)
dxi

dt
=

∑
j

wijxj + pi,

wherewij is the influence coefficient of transcriptj on transcripti, andpi is an externally applied pertu
bation to the level of transcripti. To learn the model, we collect training data by artificially synthesiz
extra copies of individual transcripts to perturb the cells, and then measuring the steady-state l
all transcripts in the network. Because steady-state data is used, dxi/dt = 0, andpi = −∑

j wijxj . This
means that changes in the inputs to transcripti must balance the external perturbation. Therefore,
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measurement of the perturbation,pi , provides an estimate of the steady-state rate of synthesis of
script i from its promoter.

The algorithm learns the weights of the model using least-squares regression, wherepi serves as
the dependent variable, and the RNA concentrations,xj , as the regressors. Typically, the number
experimental data points is much less than the number of parameters in Eq.(8), and thus multiple so
lutions exist. To address this problem, we apply additional constraints to account for the sparse
of transcription networks. The NIR algorithm forces each transcript to have a maximum ofk regulators
(k nonzero weights), wherek is much less than the number of experiments. To find thek nonzero weights
the algorithm employs a greedy search scheme[45,46]in which the weights are added iteratively. In ea
iteration, it selects the weight providing the greatest reduction in squared error.

Alternately, one may account for the sparsity of the network by using statistical strategies that
the dimension of the data. These strategies include regression against clusters of transcripts[34] and
principal component regression schemes[35,36]. We tested the NIR method on the SOS network
E. coli. This network regulates the cell’s response to DNA damage and involves more than 100
Because the SOS network was well described in the literature, it served as a good system for va
the NIR method. As a starting point, we applied the NIR method to a subset of nine transcripts at t
of the network. We used a synthetic DNA construct called aplasmid to synthesize extra copies of ea
transcript; we used the plasmid to perturb one transcript per experiment in nine separate expe
We measured the resulting steady-state changes in the levels of all nine transcripts in each exp
From this data, NIR algorithm calculated a network model that correctly identified 25 of the prev
known regulatory relationships between the nine transcripts, as well as 14 relationships that
novel regulation pathways, or possibly false positives (Fig. 7). These results were obtained with a noi
to-signal ratio of approximately 68%.

We subsequently used the network model as a predictive tool for analyzing new RNA expressio
A common problem in drug discovery is to identify the molecular targets of potential drug compo
RNA expression data offers the possibility to find such targets by measuring all transcript respon
drug. However, responses of the true targets of a drug are often masked by secondary changes
hundreds of transcripts. For example, as illustrated inFig. 8, when we applied the antibiotic mitomyc
C to E. coli, we observed changes in all nine measured SOS transcripts. But the known med
mitomycin C is only therecA gene. The network model obtained by the NIR algorithm enables
separate secondary changes from those that are due to the interaction with the drug. As illus
Fig. 8, we used the network model to filter the mitomycin C expression data and correctly ident
recA transcript as the target. The same target was identified for treatments with UV irradiation a
antibiotic pefloxacin, both of which stimulate therecA transcript, but not for novobiocin, a drug which
not know to stimulaterecA.

6.2. Boolean network models

Boolean network models describe transcript levels as binary variables. A “1” represents that
script is expressed, or that it is changed relative to a reference state. A “0” represents that a tran
not expressed or unchanged. The state of a transcript is determined as a Boolean function of the
the input transcripts, i.e.,

(9)xi(t + 1) = f B
i

(
x1(t), . . . , xN(t)

)
,
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Fig. 7. Inference of a nine-transcript subnetwork of the SOS pathway inE. coli using the NIR algorithm. (a) Graph depiction
the network model identified by the NIR algorithm. Previously known regulatory influences are marked in blue, novel infl
(or false positives) are marked in red. The strengths and directions of the identified connections are not labeled in t
(b) The network model is also depicted as a matrix of interaction strengths. The colors are the same as in panel
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

wheref B
i is a Boolean function for transcripti. Boolean models were pioneered by Kauffman[47] to

theoretically explore possible dynamic properties of gene networks. More recently they were stu
a model for reverse-engineering gene networks[4,6,48].

Researchers have explored two primary strategies to learn the connectivity of transcripts and
teraction functions in Boolean networks. The first strategy computes the mutual information be
sets of two or more transcripts and tries to find the smallest set of input transcripts that provide
plete information on the output transcript[4]. The second approach looks for the most parsimoniou
of input transcripts whose expression changes are coordinated or consistent with the output tr
[6,48,49]. In both approaches, one may employ trimming strategies to eliminate redundant conn
in the network.

Solving Boolean networks requires large amount of experimental data because it does no
constraints on the form of the Boolean interaction functions,f B. Thus, to completely determine th
i
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Fig. 8. The NIR-inferred network model is used to predict the gene targets inE. coli of different cell treatments. (a) Transcri
expression changes following treatment with the antibiotic mitomycin C. Red indicates a statistically significant chang
denote significance levels:P = 0.3 (dashed),P = 0.1 (solid). (b) The NIR-inferred network model filters the expression d
to show thatrecA, and possiblyumuDC are the only targets of the drug. (c) The network model also predicts the targets
irradiation and two additional antibiotics. The expression data (not shown) were obtained from public microarray data
the case of UV irradiation and pefloxacin treatment, both DNA-damaging, therecA gene is correctly predicted as the mediato
the expression response. For novobiocin, which does not damage DNA,recA is not predicted as the mediator of the express
response. (For interpretation of the references to color in this figure, the reader is referred to the web version of this a

interaction functions from data, an algorithm must have samples of all possible combinations o
expression states. (SeeFig. 9.) Unlike linear or other more constrained functions, an algorithm ca
interpolate between states that are measured experimentally. Consequently, for a fully connected
network, an algorithm would require approximately 2N data points (all transcripts being measured in e
data point) to infer all interaction functions, assuming no measurement errors[50]. Often, one assume
networks are sparsely connected, which reduces the demand for data. Nevertheless, the data req
are still considerable.

Most of the current work on Boolean networks assumes that RNA transcript data has been
been discretized into binary variables. Because measurement error on transcript data is often qu
discretization is not trivial. One must choose an appropriate statistical test and a confidence thre
perform this discretization. Regardless of the approach used, false positive and false negative e
inevitable, which will lead to degradation of performance of the algorithm. Although problems stem
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Fig. 9. (a) An example transcript control network with five transcripts and five connections. Different models may be
represent the relationship between input and output transcripts, as illustrated for transcript 3 panels (b), (c), and (d)
ferential equation model of the input/output relationship. For a linear relationship, the model requires two parameters
transcripts 1 and 2 to transcript 3. (c) Boolean model of input/output relationship. The model requires four parameters
transcripts 1, 2 and 3. “OR” logic is illustrated. (d) Bayesian network model of the input/output relationship. The m
similar to the Boolean model; it requires four parameters to relate transcripts 1, 2 and 3. But the parameters specific p
distributions rather than deterministic relationships. “OR-like” logic is illustrated.

from noisy data are significant, they have received only limited direct attention[51] in studies exploring
Boolean reverse-engineering approaches.

Most work on Boolean networks has examined only simulated data sets. Thus, it is difficult to
their practical utility. Although Boolean networks offer much promise for describing the combina
complexity of transcriptional regulation[52], it seems that issues regarding noise and data requirem
will impede their practical use in reverse-engineering.

6.3. Bayesian network models

Bayesian network models provide a way to account for the noise and data limitations inheren
pression studies, and also retain the combinatorial logic of transcription regulation. Bayesian ne
represent the state of a transcript as a random variable,Xi . The random variable is specified by a prob
bility distribution function,fi , which is dependent on (i.e.,conditioned on) a set of regulator transcript
Xj . We can write this as:

(10)Prob(Xi = xi |Xj = xj ) = fi(xi |xj ),

wherej = 1, . . . ,N, andj �= i, and a lowercasex denotes a particular value ofX. For simplicity, we
can write the left hand side of the equation asP(X |X ). This conditional distribution has one furth
i j
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restriction, a transcript may be a regulator of any other transcript, provided that the network cont
cycles (i.e., no feedback loops). This restriction is the principal limitation of Bayesian network mo
It stems from the joint probability distribution function for all transcripts,f , from which we derived
Eq.(10). For example, the state of transcripts in the network inFig. 9 is given by the joint distribution:

Prob(X1 = x1, . . . ,X5 = x5) = f (x1, . . . , x5).

Again, one can write the left hand side more simply asP(X1, . . . ,X5). Applying the chain rule, we ca
rewrite the joint probability distribution as the product of conditional probabilities:

P(X1, . . . ,X5) = P(X5|X4, . . . ,X1)P (X4|X3,X2,X1)P (X3|X2,X1)P (X2|X1)P (X1).

Thus, we obtain the form of the conditional distributions given by Eq.(10). This factoring shows that th
joint distribution cannot be satisfied by a network topology that contains cycles.

In the terminology of Bayesian networks, the regulators of a transcripts are called itsparents. If we
assume that the probability of each transcript depends only on the state of itsparents, then we can furthe
simplify the joint probability to:

P(X1, . . . ,X5) = P(X5|X3,X2)P (X4|X3)P (X3|X2,X1)P (X2)P (X1).

Only the parent transcripts appear as regulators in the conditional distribution functions. Thus, to r
engineer a Bayesian network model of a transcription network, we must find two sets of para
the model topology (i.e., the regulators of each transcript), and the conditional probability fun
relating the state of the regulators to the state of the transcripts. If the network is sparsely con
each transcript will have few regulators, which helps to minimize the number of parameters in the

As is the case for differential equation models, the model learning algorithm usually presu
the form of the conditional probability function,fi . Any function may be used, including Boolean a
linear functions. But there will be a trade-off between model realism and model simplicity. More re
models will have more parameters, which will require more experimental data and greater compu
effort to solve.

As an example, consider the network inFig. 9. If we discretize transcript levels into binary rando
variables, the algorithm must learn four parameters to specifyP(X3|X2,X1), the conditional distribution
for transcript 3. One parameter exists for each of the 2k combinations of the states of thek parents. Thus
to fully specify the distribution function for a transcript, one must experimentally observe each ofk

states at least once (as is the case for Boolean networks). Because this is an impractically large
of experiments, training data sets for such models are often incomplete; i.e., they do not mea
possible states. Fortunately, the Bayesian network structure enables an algorithm to partially spe
conditional distribution function for at least those states that are observed. A set of partially co
distribution functions can be sufficient to determine the topology of the network.

The network structure is usually determined using a heuristic search, such as a greedy-hill c
approach or Markov Chain Monte Carlo[33] method. For each network structure visited in the sea
an algorithm learns the maximum likelihood parameters for the conditional distribution functions.
computes a score for each network using the Bayes Information Criteria[33] or some other metric tha
measures the overall fit of the model to the data. One may then select the highest-scoring netwo
correct network.

Often, because training data are incomplete, the learning problem is underdetermined and
high-scoring networks are found. To address this problem, one can use model averaging or boots
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to select the most probable regulatory interactions and to obtain confidence estimates for the inte
For example, if a particular interaction between two transcripts repeatedly occurs in high-scorin
els, one gains confidence that this edge is a true biological dependency. Alternatively, one can a
an incomplete data set with prior information to help select the most likely model structure. The
bilistic structure of a Bayesian network enables straight-forward incorporation of prior informatio
application of Bayes rule[33].

Typically algorithms use steady-state transcription measurements for the training data. Howev
data do not permit the modeling of network dynamics. To capture dynamics behaviors, one m
Dynamic Bayesian networks[53,54]along with time-series data. These models also offer the possi
of capturing feedback loops. However, Dynamic Bayesian networks may moderately increase th
plexity and data demands of the model. They are also subject to the challenges of using time-ser
which are discussed below.

Bayesian models are well-suited to dealing with incomplete data sets, and allow for the incorp
of prior data about the structure of a regulatory network. Consequently, researchers have devoted
erable attention in recent years to the use of Bayesian network approaches for reverse-enginee
networks[13,37,54–56]. In our own work, we have successfully applied a Bayesian network mod
reverse-engineer transcription network interactions inE. coli (Fig. 10).

6.4. Association networks

Association networks assign interactions to pairs of transcripts that exhibit high statistical sim
(i.e., statistical dependence) in their responses in all experiments in a training data set. To meas
ilarity, algorithms often use Pearson correlation, which assumes linear dependence between v
or mutual information, which makes no assumptions about the form of dependence between va
Because association networks measure only similarity, they cannot assign direction to the con
between transcripts.

This class of algorithms requires a training data set of transcript expression levels measur
many different experimental conditions. Algorithms begin by adding connections between all tra
pairs with expression profiles that exceed a threshold of similarity. Ideally, connections in this gra
describe true input–output (parent–child relationships). However, many connections in this initia
may associate transcripts that are regulated by a common parent transcript, or transcripts that a
nodes upstream in the network. In other words, the first step of the algorithm does not distinguish
and causal relations, nor between direct and indirect relations. To address this problem, a pruning
is undertaken to remove connections that are better explained by a more direct path through th
What remains are the connections that are more likely to be causal interactions.

As an example, inFig. 9a, the first step of the algorithm will likely find high correlation betwe
transcript 1 and 5, even though there is no direct interaction between them, because some of t
ence of transcript 1 on 3 is transferred to transcript 5. By considering higher-order dependences,
algorithms try to remove this type of connection. The connection between transcript 1 and 5 is re
because the similarity is lowest among the three pairs of transcripts 1, 3 and 5. Likewise, a false
tion between transcripts 3 and 5 would be removed among transcripts 3, 4 and 5. Clearly this m
also susceptible to errors. For example, the relation between transcripts 4 and 5 might be remov

One recent association network algorithm uses partial correlation[15]. The algorithm first uses Pea
son correlation or Spearman rank correlation to connect all similar transcripts. To remove red
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Fig. 10. A Bayesian network of theE. coli SOS pathway, which we inferred from a set of 56 microarrays measuring ce
sponse to single-transcript perturbations. We included only the 56 perturbed transcripts in the inferred network and d
expression measurements into binary values. We used a Markov Chain Monte Carlo (MCMC) search with a Bayesian
tion Criteria (BIC) score to find the best set of transcript dependencies. We determined confidence values (the numb
arrows) for connections as the frequency at which an connection occurred in samples drawn from the MCMC searc
ously known connections (as determined from regulon DB[69]) are shown in red. Only edges with a frequency above 0.8 were
retained in the final network. (For interpretation of the references to color in this figure, the reader is referred to the web
of this article.)

connections, the algorithm then prunes the network using partial correlation coefficients. Part
relation measures the correlation between two variables after subtracting the correlation betwe
variable and one or more additional variables. In other words, partial correlation measures the cor
between variables,conditioned on the additional variables. The number of conditioning variables de
theorder of the partial correlation; e.g., a first-order partial correlation is conditioned on one varia

The pruning step calculates the first and second-order partial correlation between two transcrip
every possible combination of the conditioning transcripts. It removes the connection between
transcripts if their partial correlation falls below some significance threshold for any combination o
ditioning transcripts. A low partial correlation implies that the dependency between the two transc
better explained by the conditioning transcripts.
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For computational efficiency, the algorithm considers only up to second-order partial correlatio
the authors use simulations to show that improvements for higher-orders are minor. The power of
proach is not high (only 20–40% of interactions were inferred in simulations), but it produces a col
of small sparse subnetworks with high-confidence.

A second algorithm, called ARACNE, uses mutual information to associate transcripts[57,58]. It
was written to address the difficult problem of network reconstruction in mammalian systems wh
number of transcripts is higher and the network topology is more complex. The algorithm crea
initial graph by connecting all transcript pairs with a mutual information value above ap-value derived
threshold (the mutual information,I (Xi,Xj ), between two variablesXi andXj is zero when they ar
independent). The algorithm then prunes indirect interactions by considering all triplets of trans
A triplet is a fully connected set of three transcripts. The algorithm removes the connection w
lowest mutual information (least dependence). This process results in locally tree-like network
would not be able to infer subgraphs like that ofX3, X4, andX5 in Fig. 9. Alternatively, one can specif
a tolerance threshold to prevent pruning of more significant 3-transcript loops.

A third algorithm utilizes the dynamic information encoded in time-series data[59,60]. It calculates
the time-delayed cross-correlation coefficient between pairs of transcripts. The algorithm retains
correlated transcript pairs, and prunes the connections according the length of delay at which th
mum correlation occurs. The method assumes that direct connections will exhibit maximum corr
at shorter delays. Thus, the algorithm eliminates redundant connections better explained by con
with shorter delays.

7. Challenges

A challenge common to all reverse-engineering techniques is noisy, limited data. Without simp
assumptions, the models used to represent transcriptional control networks are underdetermin
first step, one chooses a model structure that places constraints on the form of interaction fu
thereby limiting the number of model parameters. Linear models and discretization of variables
examples of such simplifications. One can obtain further reduction in parameters by assuming
net structure. But this comes at the cost of computational complexity; a heuristic or Monte Carlo
for the best combination of regulators of each transcript is required. The sparsity assumption
addressed also using statistical techniques such as principal components analysis or clustering
similarly-regulated genes. Regardless of the simplification strategy employed, the resulting mod
provide an incomplete or coarse-grained portrait of the underlying transcriptional network.

A potentially more promising way to deal with limited data is to use prior information collected
distinct experimental techniques. In several examples of this strategy[61–64], researchers assumed th
the complete topology of a TF/promoter interactions was known a priori. Algorithms were applied
termine the strength of interactions and the activation state of the TF proteins in particular exper
conditions. The resulting models provided a quantitative basis for the timing and strength of the ob
transcription responses, and helped to connect transcription regulation with protein and metabol
lators.

Unfortunately, information on the topology of transcription networks is often spotty. Thus, algor
that can appropriately utilize partial prior information are of great value. To date, such most algo
have used theintersection of data collected through distinct experimental modes, e.g., sequence, a
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regula-
tion, expression, and chromosome-binding data. For example, when analyzing a yeast expression
Segal, et al.[13] restricted the set of possible regulators to those that had been annotated with reg
roles. However, care must be taken to avoid excessive bias in the results. For example, if annota
incomplete or incorrect, an algorithm may not identify correct regulators. Other algorithms that co
data types have been explored[11,37,65–67], including the physical algorithms discussed above. S
approaches remain a promising area of research.

Decreases in the cost of experimental technology may also help to alleviate problems concer
quantity and quality of data. One will be able obtain more replicates to improve measurement
and measure more experimental conditions to observe different transcriptional states of a cell. Ev
such improvements, experimental data will remain finite, and questions concerning optimal exper
design will remain. That is, how can one get the biggest bang for their buck? A significant ques
whether to use a time-series design or a steady-state design. The steady-state design may miss
events that are critical for correctly inferring the control structure of a transcription network, but it en
one to observe more diverse experimental conditions. On the other hand, time-series experim
capture dynamics, but many of the data points may contain redundant information leading to ine
use of experimental resources. In our own work, we have found the steady-state design to b
informative for inferring topology[12], and simpler to implement experimentally, but both approac
have been explored[10,59].

Another key challenge for reverse-engineering transcription networks is validation of the metho
number and complexity of algorithms is expanding rapidly, but no generally accepted benchmark
exist for evaluating their performance. In part, this is due to the differing objectives of the algor
and limited availability of standardized data sets (experimental or computational). Thus, it is cu
almost impossible to rationally judge the relative merits of the algorithms. Moreover, most algo
have limited or no experimental validation. Hence, their practical utility often remains unknown. A
field of biochemical reverse-engineering continues to develop, it is important that algorithms be
against standardized data sets[68] using benchmark performance criteria. Only with such testing,
thorough application of algorithms to experimental data sets, will it become clear what are the str
weaknesses, and practical utility of various approaches.

8. Summary

The number of approaches for reverse-engineering transcription networks is large and expan
this review, we have classified the approaches into two general categories: physical and influen
influence approach produces agene network model that will not usually have meaning in terms of dir
physical interactions between cellular molecules, and thus, may be difficult to interpret or extend t
additional experimental studies. But it can capture system-wide regulatory relationships betwee
that provide practical value. For example, in our own work, we have used gene network models to
the targets of drugs inE. coli [12] and yeast[70].

The physical approach, on the other hand, does not necessarily provide a system-wide picture
latory influences in a cell, but it does provide estimates of the physical topology of regulatory intera
Thus, such an approach provides a more permanent and extendable model of transcription re
This approach appears particularly promising for decoding mechanisms of transcription factor
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tion. It may soon be possible to map the transcriptome with the same certainty, speed and efficien
now possible for genome sequencing.

Although the objectives and applications of the two strategies are different, they share many
same computational principles and challenges. For example, linear, Bayesian, and association ap
have been applied in both strategies. And both strategies encounter similar challenges with respe
limitations and computational complexity. As these approaches are increasingly applied to ben
simulated and experimental data sets, it will become clear what are their relative merits and p
utility. We hope that a few particularly effective approaches will emerge as standards for syst
application to many organisms.
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