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Abstract

Microarray technologies, which enable the simultaneous measurement of all RNA transcripts in a cell, have
spawned the development of algorithms for reverse-engineering transcription control networks. In this article, we
classify the algorithms into two general strategies: physical modeling and influence modeling. We discuss the
biological and computational principles underlying each strategy, and provide leading examples of each. We also
discuss the practical considerations for developing and applying the various methods.
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1. Introduction

One decade ago, DNA microarray technologties3] were developed which enabled an experimenter
to simultaneously measure the concentration of thousands of RNA transcripts from a single sample of
cells or tissues. Such data offered the possibility to infer, or “reverse-engineer,” a model of a cell's
underlying transcription control systemiSig. 1). Engineers and scientists have previously developed
reverse-engineering technigues in the fields of computer science, engineering, and statistics, which are
respectively called machine learning, system identification, and statistical learning. Hence, not long after
DNA microarray technology emerged, researchers proposed plausible approaches to reverse-engineer th
mechanism of transcription control in cej#s-10].

Continuing researcfiL1-15]has dramatically expanded the types of reverse-engineering approaches
and their application to experimental data. Still, the development of reverse-engineering methods remains
a challenging and active area of research. Challenges principally arise from the nature of the data; they
are typically noisy, high dimensional, and significantly undersampled. Moreover, well-understood and
standardized benchmark systems for validating algorithm performance are not available. Thus, significant
questions still remain regarding experimental design, the reliability of the predicted networks, and the
utility of various approaches for particular applications.
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Fig. 1. The general strategy for reverse-engineering transcription control systems. (1) The experimenter perturbs cells with
various treatments to elicit distinct responses. (2) After each perturbation, the experimenter measures the expression (concen:
tration) of many or all RNA transcripts in the cells. (3) A learning algorithm calculates the parameters of a model that describes
the transcription control system underlying the observed responses. The resulting model may then be used in the analysis anc
prediction of the control system function.
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Fig. 2. Gene expression is a three step process. (1) A region of DNA (a gara)ssibed into RNA. (2) RNA istrandated
into a chain of amino acids. (3) The amino acid chaifolged into its functional 3-dimensional protein structure. Regulation
of cell dynamics can occur at any of these steps.

In this article, we review promising examples of several classes of algorithms for reverse-engineering
transcriptional control systems using RNA transcript measurements. We group these approaches into two
general strategies: “physical” approaches, which seek to identify the molecules that physically control
RNA synthesis, and “influence” approaches, which seek to model causal relationships between RNA
transcripts. The causal relationships may or may not correspond to true molecular interactions. Within
both strategies, similar computational techniques may be applied, including linear regression, Boolean
inference, Bayesian learning, correlation and mutual information.

We begin with a review of the fundamental concepts of gene expression related to reverse-engineering
methods. We then provide an introductory example of reverse-engineering applied to transcription regula-
tion. We next discuss the principal reverse-engineering strategies developed to date. Finally, we conclude
with brief comments on the practical considerations for developing and applying the various methods.

2. Geneexpression in a nutshell

Gene expression refers to the process by which cells produce proteins from the instructions encoded
into DNA [16]. In essence, one may consider it to be a three step proEass2): first, specialized
proteinstranscribe a region of DNA (a gene) into an RNA molecule (also calletamscript); second,
additional proteins process the RNA transcript &nagsl ate it into an polypeptide chain; third additional
proteins fold and modify the polypeptide chain into a biochemically active protein. Regulatory molecules
can control the concentration and form of the product of each step. These regulators are usually fully-
formed proteins, but any of the intermediate products (RNA, polypeptides, or proteins) also may act as
regulators of gene expression.

Reverse-engineering techniques have principally focused on decoding the mechanisms of transcrip-
tion control, the first step in gene expression. This is because DNA microarray technology has enabled
researchers to efficiently measure the concentration of all RNA transcripts in a cell, making such data
abundant. Measuring peptide, protein and metabolite regulators of gene expression is generally more
difficult, and such data are not often available. But with improved technologies for protein and metabo-
lite measurement, reverse-engineering techniques may be extended to the second and third steps of ger
expression.

Microarray technology consists of glass slides or silicon chips containing thousands, or millions, of
DNA probes, each of which is complementary to a specific RNA species in tHé-€8]l Each probe can
bind to, and quantitatively measure, the concentration of an individual RNA species. Due to variations
in probe sensitivities, the technology can reliably measure only relative changes in RNA concentrations.
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Thus, one reports RNA measurements as concentration ratios for each transcript relative to its baseline
state. For example, we can determine that two different transcripts both double in concentration, but we
will not know if one of the two transcripts is more abundant than the other.

2.1. Mechanisms of RNA regulation

RNA levels in a cell can be controlled via the rate of synthesis or the rate of elimination (degradation
or modification to another form). The rate of degradation of RNA can be modulated by RNA-degrading
proteins. One usually assumes that RNA degradation is nonspecific, and thus, not a dominant mode of
control. There are exceptions, however, such as the mazF protEincoti [17-19] which appears to
degrade specific RNA species under stress conditions.

RNA synthesis (transcription) is controlled by the activity of RNA polymerase (RNAP), the protein
complex that reads the DNA and copies it into RNA. Transcription of DNA begins when RNAP recog-
nizes and binds to promoter, which is a control sequence of DNA upstream of the transcribed region
(Fig. 3a). After binding, RNAP opens the DNA double helix and slides along the DNA sequence, elon-
gating the RNA message by adding ribonucleotides that match the DNA sequence. Transcript elongation
proceeds until the RNAP encounters a stop sequence in the DNA. Factors that bind directly to the RNAP
complex can modulate the binding rate, the binding specificity, the rate of RNA elongation, and the ter-
mination of elongation. Examples include the ppGpp molecule, which alters the binding specificity of
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Fig. 3. (a) RNA transcription begins when an RNA polymerase (RNAP) binds to upstream recognition sequences on the DNA
sequence (promoters). The two strands of DNA are separated and RNAP moves along the DNA, transcribing an RNA copy of
it until a stop region on the DNA knocks the polymerase off. (b) Some genes have an activator protein that binds to a motif
(0p) near the promoter. This protein increases the affinity of RNAP for the promoter. (c) Other genes have repressor proteins
that bind to motifs OR) in the promoters. Repressor proteins can act by blocking access of RNAP to important regions of the
promoter.



T.S Gardner, J.J. Faith / Physics of Life Reviews 2 (2005) 65-88 69

RNAP under stress conditions in many microfi28], and the N protein, which alters the termination
site of RNAP in bacteriophage lambda DN21].

Transcription can be controlled also by an auxiliary protein call&@dascription factor (TF). A TF
binds to a short, unigue DNA sequence, calledatif, in or near the promotef{g. 3). When bound to
its motif in a promoter, a TF can recruit RNAP to atypical promoters, or block the binding of RNAP to
promoters. Because this form of regulation is highly specific to particular RNA transcripts, it appears to
be the predominant form of RNA regulation in cells.

2.2. Asimple modd of transcription
We can obtain a simple model of transcription by considering the RNAPthe DNA promoter §),

and the RNA transcripty) as chemical species in a well-stirred environment. Applying the principles of
rate-law kinetic modeling, we obtain:

kl} ki2
P+NZPN—P+N-+S, (1)
k-1

wherek,; andk_; describe the on and off rates of RNAP binding, @nd reflects the transcript elonga-
tion rate. Under the assumption that, is small, or the assumption that the concentration of promoter
(N) is much smaller than the concentration of RNAP)(we can write a differential equation for tran-
scription as:

ds  Vmp

d  p+Knm
where the lowercase letters denote the concentrations of the respective sggeigs,,n is the maxi-
mum rate of synthesik, = (k_1 + k,2)/ k.1 is the Michaelis constant, arfdaccounts for a constant
rate of degradation of RNA transcript. More formally, the above assumptions create fast and slow time
scales in the reaction, and EH@), describes the slow dynamick,, describes the activation threshold
for p. For concentrations gb aboveK,, the rate of synthesis begins to saturate at its maximum value,
Vm.

Given the small number of reacting molecules, the omission of several other chemical species involved
in transcription, and the inhomogeneous nature of the cell content§2)Hg.an imperfect model. Nev-
ertheless, it has proven effective for capturing qualitative and quantitative features of gene expression
[22-31]

We can also incorporate regulatory control into the rate-law model of transcription. For example,
RNAP does not recognize some promoters without the help of an activating TF that first binds to the
promoter Fig. 3b). This reaction scheme leads to the following modification of(Eq.

d « V
—S = a mP —5S, (3)
dr a*+K,) p+ Kn

wherea denotes the concentration df, the activator, and, is the activation threshold foA. The
activator simply modulates the maximum rate of transcription. The parametethe equation is a co-
operativity exponent. It is determined by the number of copies of the binding motif iothe promoter.
If M, is the number of binding motifs that must be occupiedikiy order to recruit RNAP, thea = M,,.

Ss, (2)
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Transcription from promoters may also be inhibited by repressor TFs. Multiple forms of inhibition are
possible. A common one is competitive inhibition, which means that the binding of the repressor TF and
the RNAP are mutually exclusivé&ig. 3c). For competitive inhibition, Eq2) is modified as:

ds Vinp
Bl ) 4
dt p+ Km(ltrP/K,) O (4)

wherer denotes the concentration of the repres#yrand K, is the inhibition threshold folR. The
repressor can be viewed as modulating the activation thresk@ldof the promoter by RNAP. The
parametep, is similar toa, and is determined by, the number of copies of the binding motif f&r
in the promoter.

3. Reverse-engineering: an introductory example

Identifying the binding motifs of TFs in promoters is a principal challenge in reverse-engineering the
mechanisms of transcriptional control. Bussemaker, et al. introduced a promising strategy for combining
RNA expression data and genome sequence data to identify the binding motifs of transcription factors in
promoterq11]. The method assumes that the rate of transcription from a particular promoter will reflect
the number of binding motifs for a TF in that promoter. The method begins by exhaustively enumerating
all possible binding motifs of a given length of nucleotides, and then counting the number of copies of
each possible motif in every promoter in a cell. Most of these putative motifs are not real. True motifs are
distinguished because the copy number of true binding motifs in a promoter will correlate linearly with
the logarithm of RNA levels measured using a microarray.

The rationale for the approach follows from the model of transcription that we developed in the previ-
ous section. Under steady state expression conditions (/&l;, € 0), the measured RNA level provides
an estimate of the rate of synthesis. For example(Bmives:

1\ V,
= <_> P 5)
8)p+Knm
We assume that the TF concentrations are far from saturating a promoter at its maximum rate of tran-
scription, e.g.q® < K, andr? > K,.(p/Km+ 1). Near saturation, RNA measurements are uninformative
because changes in TF activity or motif copy number will have little influence on transcription; thus, the

motif-finding method will work poorly in this regime. With the saturation and steady state assumptions,
we can write Eq(3) for activation as:

a( 1 Vinp )
s=a —,
0K, (p+ Km)

and Eq.(4) for repression as:

_ B Kr VmP
S =r e I

The guantities inside the parenthesis are constant. Taking the logarithm gives:

logs = alog(a) + constant
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for activation, and
logs = —Blog(r) + constant

for repression. We recall that = M, and 8 = M,. Assuming that both repression and activation are
simultaneously possible in a single promoter, we obtain a general expression relating motif copy humber
to the logarithm of RNA levels:

logs =Y yiM; + yo. (6)
whereM; is the copy number of motif in the promotery; represents the log concentration of theiTF
in the cell, andy, is a constant.

The Bussemaker algorithm determines the coefficigntsyf Eq. (6) by regressing the copy number
of each motif in each promoter against the log RNA level measured for each promoter in a particular
experiment. (In practice, one uses the lagjo of RNA relative to a reference state.) The algorithm
assumes that the combination of motifs providing the most significant regression fit is the true set of
active motifs in the measured experiments.

Selecting the best combination of motifs can be a computationally hard task. The number of puta-
tive binding motifs in promoters is large, and only a small subset of them are true motifs. For example,
more than 20 000 motifs of 7 nucleotides exist. The Bussemaker algorithm may detect on the order of
10 of them as active in one experiment. Exhaustive scoring of every subset of motifs is infeasible due
to the huge number of combinations. Thus, the algorithm uses an iterative, greedy search for the best-
fitting combination. In each iteration, the algorithm fits motifs one at a time and selects the best fitting
motif. It then subtracts the influence of that motif from the expression data and fits another motif to
the residual signal. The algorithm repeats the process until the addition of motifs does not improve the
fit. This search scheme assumes that the contribution of each motif to the RNA expression is indepen-
dent.

Due to the size and complexity of transcription control networks and limitations on the amount of
experimental data, a combinatorial search problem like that encountered in the Bussemaker algorithm
is almost universal in reverse engineering approaches. Researchers have applied several strategies |
address the problem, including heuristic strategies like the Bussemaker approach, Monte Carlo methods
[32,33], dimensional reductiof84—36] and prior informatiorf13,37] Selection of an optimal strategy
for each approach remains a challenge.

The success of the Bussemaker approach depends on a number of assumptions regarding the dynami
of transcription. Most notably, it relates the influence of combinations of TFs as a log-linear function of
RNA levels. Such a highly constrained model may lead to errors in predictions. Indeed, the authors of
the study point out that the log-linear model captured at best 30% of the signal present a test data set
of yeast expression experiments. More complex nonlinear models of transcription may be more suitable.
One such approadii4] which also a captures location and orientation features of binding motifs, is de-
scribed below. Despite it’s limitations, the Bussemaker method successfully analyzed yeast sequence anc
expression data; it identified many of the known binding motifs present in previously-studied promoters.

Another limitation of the Bussemaker approach is that it cannot determine which TFs bind to the
discovered motifs. One strategy to overcome this problem requires that RNA levels are measured after
directly perturbing the expression of a T#8]. The most significant binding motifs that the Bussemaker
algorithm detects in that experiment are assumed to be those bound by the perturbed TF. In tests on
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experimental data, this method typically ranked the true binding site of a TF as the first or second most
significant identified motif. Thus, it may provide a means to systematically determine the network of TF
regulators and their binding motifs in a cell.

4. Two general reverse-engineering strategies

The Bussemaker approach is an example of a “physical”’ straB3jyfor reverse-engineering tran-
scription regulation using RNA expression data. The physical approach seeks to identify the protein
factors that regulate transcription, and the DNA motifs to which the factors bind. In other words, it seeks
to identify true physical interactions between regulatory proteins and their promoters. An advantage of
this strategy is that it can reduce the dimensionality of the reverse-engineering problem by restricting
possible regulators to TFs. It also enables the use of genome sequence data, in combination with RNA
expression data, to enhance the sensitivity and specificity of predicted interactions. The limitation of this
approach is that it cannot describe regulatory control by mechanisms other than transcription factors.

A second strategy, which we call the “influence” approach, seeks to identify regulatory influences be-
tween RNA transcripts. In other words, it looks for transcripts that act as “inputs” whose concentration
changes can explain the changes in “output” transcriits @). Each transcript may act as both an input
and an output. The input transcripts can be considered the regulators of transcription. By construction,
such a model does not generally describe physical interactions between molecules since transcription is
rarely controlled directly by RNA (and never by messenger RNA, which is the type of RNA predomi-
nantly measured by DNA microarrays). Thus, in general, the regulator transcripts may exert their effect
indirectly through the action of proteins, metabolites and effects on the cell environfigri)( Never-
theless, in some cases, the regulator transcripts may encode the TFs that directly regulate transcription
In such cases, the influence model may accurately reflect a physical interaction.

An advantage of the influence strategy is that the model can implicitly capture regulatory mechanisms
at the protein and metabolite level that are not physically measured. That is, it is not restricted to de-
scribing only transcription factor/DNA interactions. As described in the section on differential equation
models, an influence model may be advantageous when trying to predict the global response of the cell to
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Fig. 4. Gene network models are represented as directed graphs describing the influence of the levels of one set of transcripts
(the inputs) on the level of another transcript (the output). One usually assumes that networks are sparse, i.e., only a small subse
of transcripts act as inputs to each transcript. The relation between inputs and outputs is specified by an interactioryfiinction (
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Fig. 5. Biological networks are regulated at many levels. (a) shows an example network where protein transcription factors (blue
and green shapes) influence the expression of different transcripts (brown lines). One protein is a membrane-bound metabolite
transporter. The metabolite it imports (brown triangle) binds one of the transcription factors enabling it to bind DNA and
initiate transcription. (b) A gene network model of the real network in (a). Because the model is inferred from measurements
of transcripts only, it describes transcripts as directly influencing the level of each other, even though they do not physically
interact. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

stimuli. The limitation of this approach is that the model can be difficult to interpret in terms of the phys-
ical structure of the cell, and therefore difficult to integrate or extend with further research. Moreover, the
implicit description of hidden regulatory factors may lead to prediction errors.

5. Thephysical strategy: identifying TF interactions

Here, we describe two additional physical approaches. The objective of both, like the Bussemaker
approach, is to identify the binding motifs of transcription factors. One of the first methods to accomplish
this task was introduced by Tavazoie and colleagli@s The method assumes that transcripts controlled
by the same TFs will exhibit similar expression changes under a variety of experimental conditions.
With a sufficient number of RNA expression experiments, the method clusters transcripts based on the
similarity of their changes across all the experiments. Then the method applies a motif-finding algorithm
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to identify homologous DNA sequences in the promoter regions of the clustered transcripts. The approach
assumes that homologous DNA sequences are probable TF binding motifs.

The authors of the method applied it to a data set of 15 RNA expression profiles measured
over two cell cycles of synchronized yeast cultures. Each profile measured the expression of more
than 6000 yeast transcripts. The algorithm used-means algorithm with a Euclidean distance
metric to cluster the expression profiles for 3000 of the transcripts that exhibited significant ex-
pression changes. The authors then applied the AlignAMER algorithm to identify putative TF
binding motifs. The method found 18 motifs among 12 of the 30 clusters. Seven of the mo-
tifs corresponded to previously validated TF binding sites. The others were potentially novel mo-
tifs.

One limitation of this method is that transcripts sharing a motif may be regulated similarly under some
conditions and differently under other conditions due to the presence of different combinations of motifs
in their promoters. This may explain the failure of the approach to identify significant motifs in many of
the clusters. One possible solution to this problem is to use condition-specific clugter]rig which
genes may be grouped together in one subset of conditions, but also may be grouped in other clusters
under other conditions. Thus, genes may patrticipate in more than one cluster. Each cluster is more likely
to share common binding sites.

Another limitation of the Tavazoie method, and the Bussemaker method, is that they account only
for the presence and copy number of motifs in the promoter region. In many promoters, a binding
motif for a transcription factor may exist but have no regulatory function. Thus, location, orientation,
methylation and other properties of a motif may also influence the regulatory effect of TFs on their tar-
get promoters. A method to partially account for such properties was recently introduced by Beer and
Tavazoig[14]. This method may also overcome the clustering issues related to condition-specific regula-
tion.

The Beer and Tavazoie begins the same way as the Tavazoie method; it clusters transcripts according
to the similarity of their expression profiles across many experimental conditions, and then identifies
the overrepresented motifs in each cluster using the AlignACE algorithm. The method then finds all
transcripts that contain the identified motifs in their promoter regions, even if they are not in the original
cluster. It determines the position, orientation, order, spacing and degree of homology of these motifs
in each promoter. It then learns a Bayesian network model that describes the influence of these various
properties on transcript expression.

In the approach, motif properties are encoded as binary variables, e.g., the motif exists or doesn’t exist,
the spacing is less than 50 bases or more than 50 bases, etc. These binary variables are then treated
parent nodes (i.e., regulator variables) in the Bayesian network model. The parent nodes that best predic
the expression data are then learned through a iterative, greedy search procedure. In each iteration, eac
variable is tested and the most predictive variable is added to the model until the overall score of the
model no longer improves. The model score is the probability that the model is correct for the observed
data and is computed using Bayes theorem with equal prior probabilities for all models. More details on
Bayesian network methods are provided below.

The approach successfully identified many of the known regulatory motifs in yeast as well as many
new ones. More importantly, it succeeded in determining which transcripts were influenced by the motifs,
and the regulatory logic underlying the motif properties. One result from their skigy@) shows the
correlation of all transcripts containing two TF motifs in their promoters. Promoters with the maotifs in
specific locations show dramatically higher correlation of expression. Using five-fold cross-validation,
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Fig. 6. Dependence of gene expression on motif position. Reproduced from Beer and Tgl4zdide green curve shows

a histogram of correlation coefficients for all pairs of transcripts that contain both the RRPE and PAC motifs in their pro-
moter. The purple curve shows a histogram of correlation coefficients for just those transcripts that contain PAC in within the
first 140 nucleotides and RRPE within the first 240 nucleotides of the promoter. Correlation of transcript expression shows a
marked increase, which indicates that position has a significant influence on the regulatory effect of transcription factors. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

the authors showed that the regulatory logic identified by their algorithm could predict the expression
pattern for 73% of the 2587 transcripts examined. In addition, it showed a marked improvement over the
predictive capabilities of the Bussemaker algorithm.

6. Theinfluence strategy: inferring gene networks

The influence strategy for reverse-engineering seeks a model in which transcripts serve as regulatory
inputs that control the rate of synthesis of other RNAs. This type of model is sometimes cgéiee a
regulatory network or agene network. Gene network reverse-engineering algorithms do not use or model
protein and metabolite data. Since the concentrations of many transcription factor RNAs do not correlate
with the activity of their respective protein produd¢t,43], a gene network model does not usually
describe physical relationships between regulators and tranda2pi®,43] Nevertheless, gene network
models provide a global view of gene regulation that is not restricted to TF/promoter interactions. They
can implicitly capture the protein and metabolite factors that may influence gene expression. Such models
can provide valuable insight into the important regulators of cell responses. The models are also of value
in predicting transcription responses to new cell treatments.

In general, one can represent a gene network model as a directed grgghd(and 9a Depending
on the reverse-engineering approach used, one can describe this graph mathematically as a system
differential equations, as a Boolean network, as a Bayesian network, or as an association [dfwork
The representations provide different degrees of simplification of cell regulation, lend themselves to
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different computational strategies, and may suitable for different applications. We will discuss them in
order.

6.1. Differential equation models

One can describe a gene network as a system of differential equations. The rate of change in concen-
tration of a particular transcript,, is given by a nonlinear influence functioy}, of the concentrations
of other RNA species.

dx;
d_xl‘ :ﬁ(-xlv""xN)v (7)

whereN is the number of transcripts in the network. In general, only a small subset of all RNA species
regulate a particular transcript. In other words, the networks are sparse. The objective of reverse engineer-
ing is to determine which RNA species regulate particular transcripts, and the parameters of the functions
relating them.

An algorithm usually presupposes the form of the influence functignfResearchers have studied
various functions, including sigmoidal functiof@] and linear function$7,8,12] Thus far, the linear
functions have proven to be the most versatile in the analysis of experimental ddi& k&tsn part,
this is due the simplifying power of linear functions; they dramatically reduce the number of parameters
needed to describe the influence function and avoid problems with overfitting. Thus, the amount of data
required to solve a linear model is much less than that required by more complex nonlinear models. This
advantage is crucial in light of the high cost of experimental data and the high dimensionality of the
systems. However, this gain in experimental efficiency comes at the cost of placing strong constraints on
the nature of regulatory interactions in the cell. The restrictions may lead to errors in the network model,
and may restrict the conditions for which the model accurately describes the regulatory network.

Algorithms can infer the influence functions using time-series RNA expression data or steady state
data. If the algorithm uses time-series data, it must estimate the rates of change of the trans¢dpts (d
from the series. This can be problematic because calculating the derivative can amplify the measurement
errors in the data. Alternately, one can convert the model to a discrete dynamical 3445 which
does not require calculation of the derivatives. However, after inferring the model, one may need to
transform it back to the continuous-time domain. On the other hand, if the algorithm uses steady-state
data, & /dr = 0, and the algorithm does not need to compute derivatives.

We illustrate the linear approach with an algorithm which we developed and applied successfully to a
small network of transcripts in the bacteritEncoli [12]. In our method, called Network Identification
by multiple Regression (NIR), the rate of change of a transcript is represented as a weighted sum of the
levels of the other genes in the network:

dxi

m :Zwijxj+pia (8)
J

whereuw;; is the influence coefficient of transcripon transcript, andp; is an externally applied pertur-

bation to the level of transcript To learn the model, we collect training data by artificially synthesizing

extra copies of individual transcripts to perturb the cells, and then measuring the steady-state levels of

all transcripts in the network. Because steady-state data is ug€d: & 0, andp;, = — Zj w;;x;. This

means that changes in the inputs to transariptust balance the external perturbation. Therefore, the
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measurement of the perturbatign, provides an estimate of the steady-state rate of synthesis of tran-
scripti from its promoter.

The algorithm learns the weights of the model using least-squares regression, pylsemyes as
the dependent variable, and the RNA concentratiansas the regressors. Typically, the number of
experimental data points is much less than the number of parameters (8)Eand thus multiple so-
lutions exist. To address this problem, we apply additional constraints to account for the sparse nature
of transcription networks. The NIR algorithm forces each transcript to have a maximkmeg#ilators
(k nonzero weights), wheteis much less than the number of experiments. To find thenzero weights,
the algorithm employs a greedy search schgfbed6]in which the weights are added iteratively. In each
iteration, it selects the weight providing the greatest reduction in squared error.

Alternately, one may account for the sparsity of the network by using statistical strategies that reduce
the dimension of the data. These strategies include regression against clusters of trdBd¢rgotd
principal component regression schenigs,36] We tested the NIR method on the SOS network in
E. coli. This network regulates the cell's response to DNA damage and involves more than 100 genes.
Because the SOS network was well described in the literature, it served as a good system for validating
the NIR method. As a starting point, we applied the NIR method to a subset of nine transcripts at the core
of the network. We used a synthetic DNA construct callgdlaamid to synthesize extra copies of each
transcript; we used the plasmid to perturb one transcript per experiment in nine separate experiments.
We measured the resulting steady-state changes in the levels of all nine transcripts in each experiment
From this data, NIR algorithm calculated a network model that correctly identified 25 of the previously
known regulatory relationships between the nine transcripts, as well as 14 relationships that may be
novel regulation pathways, or possibly false positiveig(7). These results were obtained with a noise-
to-signal ratio of approximately 68%.

We subsequently used the network model as a predictive tool for analyzing new RNA expression data.
A common problem in drug discovery is to identify the molecular targets of potential drug compounds.
RNA expression data offers the possibility to find such targets by measuring all transcript responses to a
drug. However, responses of the true targets of a drug are often masked by secondary changes in tens c
hundreds of transcripts. For example, as illustrateBlign 8 when we applied the antibiotic mitomycin
C to E. cali, we observed changes in all nine measured SOS transcripts. But the known mediator of
mitomycin C is only therecA gene. The network model obtained by the NIR algorithm enables us to
separate secondary changes from those that are due to the interaction with the drug. As illustrated in
Fig. 8 we used the network model to filter the mitomycin C expression data and correctly identify the
recA transcript as the target. The same target was identified for treatments with UV irradiation and the
antibiotic pefloxacin, both of which stimulate thecA transcript, but not for novobiocin, a drug which is
not know to stimulateecA.

6.2. Boolean network models

Boolean network models describe transcript levels as binary variables. A “1” represents that a tran-
script is expressed, or that it is changed relative to a reference state. A “0” represents that a transcript is
not expressed or unchanged. The state of a transcript is determined as a Boolean function of the state o
the input transcripts, i.e.,

xi(t+1) = fR(xa(®), ..., xn(@)), )
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(@)  Network inferred by NIR method

(b) Network model: connection weight matrix

recA lexA ssb recF dinl umuD rpoD rpoH rpoS

recA 0.40 -0.18 -0.01 0.10 -0.01

lexA 0.39 -0.67 -0.01 0.09 -0.07

ssb 0,04 -1.19 -0.28 0.05 0.03

recF

dinl 0.28 -1.09 0.16 -0.04 0.01
umubC 0.11 -0.40 -0.02 0.20 -0.15

poD .17 -0.02 0.03 -0.51 0.02

rpoH 0,10 0.01 -0.03 0.52

poS 0,22 -1.68 0.67 0.08 -2.92

Fig. 7. Inference of a nine-transcript subnetwork of the SOS pathwBydali using the NIR algorithm. (a) Graph depiction of

the network model identified by the NIR algorithm. Previously known regulatory influences are marked in blue, novel influences
(or false positives) are marked in red. The strengths and directions of the identified connections are not labeled in the graph.
(b) The network model is also depicted as a matrix of interaction strengths. The colors are the same as in panel (a). (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

where £ is a Boolean function for transcript Boolean models were pioneered by Kauffnjd] to
theoretically explore possible dynamic properties of gene networks. More recently they were studied as
a model for reverse-engineering gene netwd4ks,48]

Researchers have explored two primary strategies to learn the connectivity of transcripts and the in-
teraction functions in Boolean networks. The first strategy computes the mutual information between
sets of two or more transcripts and tries to find the smallest set of input transcripts that provides com-
plete information on the output transcrig]. The second approach looks for the most parsimonious set
of input transcripts whose expression changes are coordinated or consistent with the output transcript
[6,48,49] In both approaches, one may employ trimming strategies to eliminate redundant connections
in the network.

Solving Boolean networks requires large amount of experimental data because it does not place
constraints on the form of the Boolean interaction functiof;%, Thus, to completely determine the
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Fig. 8. The NIR-inferred network model is used to predict the gene targ&sciii of different cell treatments. (a) Transcript
expression changes following treatment with the antibiotic mitomycin C. Red indicates a statistically significant change. Lines
denote significance level® = 0.3 (dashed)P = 0.1 (solid). (b) The NIR-inferred network model filters the expression data

to show thatecA, and possiblyumuDC are the only targets of the drug. (c) The network model also predicts the targets of UV
irradiation and two additional antibiotics. The expression data (not shown) were obtained from public microarray data sets. In
the case of UV irradiation and pefloxacin treatment, both DNA-damagingetAeyene is correctly predicted as the mediator of

the expression response. For novobiocin, which does not damagere®is not predicted as the mediator of the expression
response. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

interaction functions from data, an algorithm must have samples of all possible combinations of input
expression states. (S&g. 9.) Unlike linear or other more constrained functions, an algorithm cannot
interpolate between states that are measured experimentally. Consequently, for a fully connected Boolear
network, an algorithm would require approximatefy @ata points (all transcripts being measured in each
data point) to infer all interaction functions, assuming no measurement g@jrOften, one assumes
networks are sparsely connected, which reduces the demand for data. Nevertheless, the data requiremen
are still considerable.

Most of the current work on Boolean networks assumes that RNA transcript data has been already
been discretized into binary variables. Because measurement error on transcript data is often quite large
discretization is not trivial. One must choose an appropriate statistical test and a confidence threshold to
perform this discretization. Regardless of the approach used, false positive and false negative errors are
inevitable, which will lead to degradation of performance of the algorithm. Although problems stemming
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(a) (b) ODE Example: linear model
X f3 (X1’X2 ) = W31X1 + W32X2 + p3
1 \ .
2 X2 4 X3=f(X1,X2) two parameters
(c) Boolean Example: OR logic
X X,(8) X, (1) X, (t+1)
1T NAL _ b 0 010
o e XED=H0x) o
2 o 111 four parameters
1T 11
l v (d) Bayesian Example: OR-like logic
X X, X, |PX,=1)
1\p(X3|X,X) 0 0010
X 2 1 0060
2 o 1 lo0s2 four parameters
1 11098

Fig. 9. (a) An example transcript control network with five transcripts and five connections. Different models may be used to
represent the relationship between input and output transcripts, as illustrated for transcript 3 panels (b), (c), and (d). (b) Dif-
ferential equation model of the input/output relationship. For a linear relationship, the model requires two parameters to relate
transcripts 1 and 2 to transcript 3. (c) Boolean model of input/output relationship. The model requires four parameters to relate
transcripts 1, 2 and 3. “OR” logic is illustrated. (d) Bayesian network model of the input/output relationship. The model is
similar to the Boolean model; it requires four parameters to relate transcripts 1, 2 and 3. But the parameters specific probability
distributions rather than deterministic relationships. “OR-like” logic is illustrated.

from noisy data are significant, they have received only limited direct attefidnn studies exploring
Boolean reverse-engineering approaches.

Most work on Boolean networks has examined only simulated data sets. Thus, it is difficult to assess
their practical utility. Although Boolean networks offer much promise for describing the combinatorial
complexity of transcriptional regulatids?2], it seems that issues regarding noise and data requirements
will impede their practical use in reverse-engineering.

6.3. Bayesian network models

Bayesian network models provide a way to account for the noise and data limitations inherent in ex-
pression studies, and also retain the combinatorial logic of transcription regulation. Bayesian networks
represent the state of a transcript as a random varidblg he random variable is specified by a proba-
bility distribution function, f;, which is dependent on (i.econditioned on) a set of regulator transcripts,

X ;. We can write this as:

PrOtIXi:x,-IXj=xj)=ﬁ(x,-|xj), (10)

wherej =1,..., N, andj # i, and a lowercase denotes a particular value &f. For simplicity, we
can write the left hand side of the equation/a€X;|X ;). This conditional distribution has one further
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restriction, a transcript may be a regulator of any other transcript, provided that the network contains no
cycles (i.e., no feedback loops). This restriction is the principal limitation of Bayesian network models.
It stems from the joint probability distribution function for all transcripfs, from which we derived

Eq. (10). For example, the state of transcripts in the networkig 9is given by the joint distribution:

Prot(Xl =Xx1,..., X5 ZX5) = f()C1, R ,X5).

Again, one can write the left hand side more simplyPaX, ..., Xs). Applying the chain rule, we can
rewrite the joint probability distribution as the product of conditional probabilities:

P(X1,..., Xs) = P(Xs|Xy, ..., X1) P(X4]X3, X2, X1) P(X3| X2, X1) P(X2|X1) P(X2).

Thus, we obtain the form of the conditional distributions given by(&f). This factoring shows that the
joint distribution cannot be satisfied by a network topology that contains cycles.

In the terminology of Bayesian networks, the regulators of a transcripts are callgtatts. If we
assume that the probability of each transcript depends only on the statparkitts, then we can further
simplify the joint probability to:

P(X1,...,Xs5) = P(X5|X3, X2) P(X4|X3) P(X3| X2, X1) P(X2) P(X1).

Only the parent transcripts appear as regulators in the conditional distribution functions. Thus, to reverse-
engineer a Bayesian network model of a transcription network, we must find two sets of parameters:
the model topology (i.e., the regulators of each transcript), and the conditional probability functions
relating the state of the regulators to the state of the transcripts. If the network is sparsely connected,
each transcript will have few regulators, which helps to minimize the number of parameters in the model.

As is the case for differential equation models, the model learning algorithm usually presupposes
the form of the conditional probability functiory;. Any function may be used, including Boolean and
linear functions. But there will be a trade-off between model realism and model simplicity. More realistic
models will have more parameters, which will require more experimental data and greater computational
effort to solve.

As an example, consider the networkFig. 9. If we discretize transcript levels into binary random
variables, the algorithm must learn four parameters to sp&uiks| X2, X1), the conditional distribution
for transcript 3. One parameter exists for each of thedinbinations of the states of theparents. Thus,
to fully specify the distribution function for a transcript, one must experimentally observe each 6éf the 2
states at least once (as is the case for Boolean networks). Because this is an impractically large numbe
of experiments, training data sets for such models are often incomplete; i.e., they do not measure all
possible states. Fortunately, the Bayesian network structure enables an algorithm to partially specify the
conditional distribution function for at least those states that are observed. A set of partially complete
distribution functions can be sufficient to determine the topology of the network.

The network structure is usually determined using a heuristic search, such as a greedy-hill climbing
approach or Markov Chain Monte Caifl@3] method. For each network structure visited in the search,
an algorithm learns the maximum likelihood parameters for the conditional distribution functions. It then
computes a score for each network using the Bayes Information Cii&ji@r some other metric that
measures the overall fit of the model to the data. One may then select the highest-scoring network as the
correct network.

Often, because training data are incomplete, the learning problem is underdetermined and several
high-scoring networks are found. To address this problem, one can use model averaging or bootstrapping
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to select the most probable regulatory interactions and to obtain confidence estimates for the interactions.
For example, if a particular interaction between two transcripts repeatedly occurs in high-scoring mod-
els, one gains confidence that this edge is a true biological dependency. Alternatively, one can augment
an incomplete data set with prior information to help select the most likely model structure. The proba-
bilistic structure of a Bayesian network enables straight-forward incorporation of prior information via
application of Bayes rulg83].

Typically algorithms use steady-state transcription measurements for the training data. However, such
data do not permit the modeling of network dynamics. To capture dynamics behaviors, one may use
Dynamic Bayesian networif53,54] along with time-series data. These models also offer the possibility
of capturing feedback loops. However, Dynamic Bayesian networks may moderately increase the com-
plexity and data demands of the model. They are also subject to the challenges of using time-series data
which are discussed below.

Bayesian models are well-suited to dealing with incomplete data sets, and allow for the incorporation
of prior data about the structure of a regulatory network. Consequently, researchers have devoted consid-
erable attention in recent years to the use of Bayesian network approaches for reverse-engineering gen
networks[13,37,54-56] In our own work, we have successfully applied a Bayesian network model to
reverse-engineer transcription network interactioris.iooli (Fig. 10.

6.4. Association networks

Association networks assign interactions to pairs of transcripts that exhibit high statistical similarity
(i.e., statistical dependence) in their responses in all experiments in a training data set. To measure sim-
ilarity, algorithms often use Pearson correlation, which assumes linear dependence between variables
or mutual information, which makes no assumptions about the form of dependence between variables.
Because association networks measure only similarity, they cannot assign direction to the connections
between transcripts.

This class of algorithms requires a training data set of transcript expression levels measured over
many different experimental conditions. Algorithms begin by adding connections between all transcript
pairs with expression profiles that exceed a threshold of similarity. Ideally, connections in this graph will
describe true input—output (parent—child relationships). However, many connections in this initial graph
may associate transcripts that are regulated by a common parent transcript, or transcripts that are a few
nodes upstream in the network. In other words, the first step of the algorithm does not distinguish similar
and causal relations, nor between direct and indirect relations. To address this problem, a pruning proces:
is undertaken to remove connections that are better explained by a more direct path through the graph.
What remains are the connections that are more likely to be causal interactions.

As an example, irFig. 9a, the first step of the algorithm will likely find high correlation between
transcript 1 and 5, even though there is no direct interaction between them, because some of the influ-
ence of transcript 1 on 3 is transferred to transcript 5. By considering higher-order dependences, pruning
algorithms try to remove this type of connection. The connection between transcript 1 and 5 is removed
because the similarity is lowest among the three pairs of transcripts 1, 3 and 5. Likewise, a false connec-
tion between transcripts 3 and 5 would be removed among transcripts 3, 4 and 5. Clearly this method is
also susceptible to errors. For example, the relation between transcripts 4 and 5 might be removed.

One recent association network algorithm uses partial correlfitEjnThe algorithm first uses Pear-
son correlation or Spearman rank correlation to connect all similar transcripts. To remove redundant
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Fig. 10. A Bayesian network of thE. coli SOS pathway, which we inferred from a set of 56 microarrays measuring cell re-
sponse to single-transcript perturbations. We included only the 56 perturbed transcripts in the inferred network and discretized
expression measurements into binary values. We used a Markov Chain Monte Carlo (MCMC) search with a Bayesian Informa-
tion Criteria (BIC) score to find the best set of transcript dependencies. We determined confidence values (the numbers on the
arrows) for connections as the frequency at which an connection occurred in samples drawn from the MCMC search. Previ-
ously known connections (as determined from regulon[6€8) are shown in red. Only edges with a frequency abo8enre

retained in the final network. (For interpretation of the references to color in this figure, the reader is referred to the web version
of this article.)

connections, the algorithm then prunes the network using partial correlation coefficients. Partial cor-
relation measures the correlation between two variables after subtracting the correlation between each
variable and one or more additional variables. In other words, partial correlation measures the correlation
between variablegonditioned on the additional variables. The number of conditioning variables defines
theorder of the partial correlation; e.g., a first-order partial correlation is conditioned on one variable.

The pruning step calculates the first and second-order partial correlation between two transcripts given
every possible combination of the conditioning transcripts. It removes the connection between the two
transcripts if their partial correlation falls below some significance threshold for any combination of con-
ditioning transcripts. A low partial correlation implies that the dependency between the two transcripts is
better explained by the conditioning transcripts.
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For computational efficiency, the algorithm considers only up to second-order partial correlation, but
the authors use simulations to show that improvements for higher-orders are minor. The power of this ap-
proach is not high (only 20—40% of interactions were inferred in simulations), but it produces a collection
of small sparse subnetworks with high-confidence.

A second algorithm, called ARACNE, uses mutual information to associate trang&&s] It
was written to address the difficult problem of network reconstruction in mammalian systems where the
number of transcripts is higher and the network topology is more complex. The algorithm creates an
initial graph by connecting all transcript pairs with a mutual information value abgwalue derived
threshold (the mutual informatiod(X;, X ;), between two variableX; and X ; is zero when they are
independent). The algorithm then prunes indirect interactions by considering all triplets of transcripts.
A triplet is a fully connected set of three transcripts. The algorithm removes the connection with the
lowest mutual information (least dependence). This process results in locally tree-like networks, and
would not be able to infer subgraphs like thaty, X4, andXs in Fig. 9. Alternatively, one can specify
a tolerance threshold to prevent pruning of more significant 3-transcript loops.

A third algorithm utilizes the dynamic information encoded in time-series [@&#0] It calculates
the time-delayed cross-correlation coefficient between pairs of transcripts. The algorithm retains highly
correlated transcript pairs, and prunes the connections according the length of delay at which the maxi-
mum correlation occurs. The method assumes that direct connections will exhibit maximum correlation
at shorter delays. Thus, the algorithm eliminates redundant connections better explained by connections
with shorter delays.

7. Challenges

A challenge common to all reverse-engineering techniques is noisy, limited data. Without simplifying
assumptions, the models used to represent transcriptional control networks are underdetermined. As ¢
first step, one chooses a model structure that places constraints on the form of interaction functions,
thereby limiting the number of model parameters. Linear models and discretization of variables are two
examples of such simplifications. One can obtain further reduction in parameters by assuming sparse
net structure. But this comes at the cost of computational complexity; a heuristic or Monte Carlo search
for the best combination of regulators of each transcript is required. The sparsity assumption may be
addressed also using statistical techniques such as principal components analysis or clustering to grouj
similarly-regulated genes. Regardless of the simplification strategy employed, the resulting models may
provide an incomplete or coarse-grained portrait of the underlying transcriptional network.

A potentially more promising way to deal with limited data is to use prior information collected with
distinct experimental techniques. In several examples of this strigég®4] researchers assumed that
the complete topology of a TF/promoter interactions was known a priori. Algorithms were applied to de-
termine the strength of interactions and the activation state of the TF proteins in particular experimental
conditions. The resulting models provided a quantitative basis for the timing and strength of the observed
transcription responses, and helped to connect transcription regulation with protein and metabolite regu-
lators.

Unfortunately, information on the topology of transcription networks is often spotty. Thus, algorithms
that can appropriately utilize partial prior information are of great value. To date, such most algorithms
have used thantersection of data collected through distinct experimental modes, e.g., sequence, annota-
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tion, expression, and chromosome-binding data. For example, when analyzing a yeast expression data se
Segal, et al[13] restricted the set of possible regulators to those that had been annotated with regulatory
roles. However, care must be taken to avoid excessive bias in the results. For example, if annotations are
incomplete or incorrect, an algorithm may not identify correct regulators. Other algorithms that combine
data types have been explordd.,37,65-67]including the physical algorithms discussed above. Such
approaches remain a promising area of research.

Decreases in the cost of experimental technology may also help to alleviate problems concerning the
quantity and quality of data. One will be able obtain more replicates to improve measurement errors,
and measure more experimental conditions to observe different transcriptional states of a cell. Even with
such improvements, experimental data will remain finite, and questions concerning optimal experimental
design will remain. That is, how can one get the biggest bang for their buck? A significant question is
whether to use a time-series design or a steady-state design. The steady-state design may miss dynam
events that are critical for correctly inferring the control structure of a transcription network, but it enables
one to observe more diverse experimental conditions. On the other hand, time-series experiments car
capture dynamics, but many of the data points may contain redundant information leading to inefficient
use of experimental resources. In our own work, we have found the steady-state design to be more
informative for inferring topologyf12], and simpler to implement experimentally, but both approaches
have been explorgd 0,59]

Another key challenge for reverse-engineering transcription networks is validation of the methods. The
number and complexity of algorithms is expanding rapidly, but no generally accepted benchmark criteria
exist for evaluating their performance. In part, this is due to the differing objectives of the algorithms,
and limited availability of standardized data sets (experimental or computational). Thus, it is currently
almost impossible to rationally judge the relative merits of the algorithms. Moreover, most algorithms
have limited or no experimental validation. Hence, their practical utility often remains unknown. As the
field of biochemical reverse-engineering continues to develop, it is important that algorithms be tested
against standardized data sg8] using benchmark performance criteria. Only with such testing, and
thorough application of algorithms to experimental data sets, will it become clear what are the strengths,
weaknesses, and practical utility of various approaches.

8. Summary

The number of approaches for reverse-engineering transcription networks is large and expanding. In
this review, we have classified the approaches into two general categories: physical and influence. The
influence approach producegeane network model that will not usually have meaning in terms of direct
physical interactions between cellular molecules, and thus, may be difficult to interpret or extend through
additional experimental studies. But it can capture system-wide regulatory relationships between genes
that provide practical value. For example, in our own work, we have used gene network models to predict
the targets of drugs iE. coli [12] and yeasf70].

The physical approach, on the other hand, does not necessarily provide a system-wide picture of regu-
latory influences in a cell, but it does provide estimates of the physical topology of regulatory interactions.
Thus, such an approach provides a more permanent and extendable model of transcription regulation.
This approach appears particularly promising for decoding mechanisms of transcription factor regula-
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tion. It may soon be possible to map the transcriptome with the same certainty, speed and efficiency as is
now possible for genome sequencing.

Although the objectives and applications of the two strategies are different, they share many of the
same computational principles and challenges. For example, linear, Bayesian, and association approache
have been applied in both strategies. And both strategies encounter similar challenges with respect to datz
limitations and computational complexity. As these approaches are increasingly applied to benchmark
simulated and experimental data sets, it will become clear what are their relative merits and practical
utility. We hope that a few particularly effective approaches will emerge as standards for systematic
application to many organisms.
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