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Abstract. Kernel methods like support vector machines have successfully been used for text categorization.
A standard choice of kernel function has been the inner product between the vector-space representation of two
documents, in analogy with classical information retrieval (IR) approaches.

Latent semantic indexing (LSI) has been successfully used for IR purposes as a technique for capturing semantic
relations between terms and inserting them into the similarity measure between two documents. One of its main
drawbacks, in IR, is its computational cost.

In this paper we describe how the LSI approach can be implemented in a kernel-defined feature space.
We provide experimental results demonstrating that the approach can significantly improve performance, and

that it does not impair it.

Keywords: Kernel methods, latent semantic indexing, latent semantic kernels, Gram-Schmidt kernels, text
categorization

1. Introduction

Kernel-based learning methods (KMs) are a state-of-the-art class of learning algorithms,
whose best known example is support vector machines (SVMs) (Cristianini and Shawe-
Taylor, 2000). In this approach, data items are mapped into high-dimensional spaces, where
information about their mutual positions (inner products) is used for constructing classi-
fication, regression, or clustering rules. They are modular systems, formed by a general
purpose learning module (e.g. classification or clustering) and by a data-specific element,
called the kernel, that acts as an interface between the data and the learning machine by
defining the mapping into the feature space.

Kernel-based algorithms exploit the information encoded in the inner-product between all
pairs of data items. Somewhat surprisingly, this information is sufficient to run many stan-
dard machine learning algorithms, from the perceptron convergence algorithm to principal
components analysis (PCA), from ridge regression to nearest neighbour. The advantage of
adopting this alternative representation is that often there is an efficient method to compute
inner products between very complex, in some cases even infinite dimensional, vectors.
Since the explicit representation of feature vectors corresponding to data items is not nec-
essary, KMs have the advantage of accessing feature spaces that would otherwise be either
too expensive or too complicated to represent. Strong model selection techniques based on
statistical learning theory (Vapnik, 1998) have been developed for such systems in order to
avoid overfitting in high dimensional spaces.
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It is not surprising that one of the areas where such systems work most naturally is text
categorization, where the standard representation of documents is as very high-dimensional
vectors, and where standard retrieval techniques are based precisely on the inner-products
between vectors. The combination of these two methods has been pioneered by Joachims
(1998), and successively explored by several others (Dumais et al., 1997; Leopold et al.,
2002). This approach to documents representation is known as the ‘bag of words’, and is
based on mapping documents to large vectors indicating which words occur in the text.
The vectors have as many dimensions as terms in the corpus (usually several thousands),
and the corresponding entries are zero if a term does not occur in the document at hand,
and positive otherwise. Two documents are hence considered similar if they use (approx-
imately) the same terms. Despite the high dimensionality of such spaces (much higher
than the training set size), support vector machines have been shown to perform very well
(Joachims, 1998). This paper investigates one possible avenue for extending Joachims’
work, by incorporating more information in the kernel.

When used in information retrieval (IR) this representation is known to suffer from some
drawbacks, in particular the fact that semantic relations between terms are not taken into
account. Documents that talk about related topics using different terms are mapped to
very distant regions of the feature space. A map that captures some semantic information
would be useful, particularly if it could be achieved with a “semantic kernel”, that com-
putes the similarity between documents by also considering relations between different
terms.

Using a kernel that somehow takes this fact into consideration would enable the system to
extract much more information from documents. One possible approach is the one adopted
by Siolas and d’Alché Buc (2000), where a semantic network is used to explicitly compute
the similarity level between terms. Such information is encoded in the kernel, and defines
a new metric in the feature space, or equivalently a further mapping of the documents into
another feature space.

In this paper we propose to use a technique known in Information Retrieval as latent
semantic indexing (LSI) (Deerwester et al., 1990). In this approach, the documents are
implicitly mapped into a “semantic space”, where documents that do not share any terms
can still be close to each other if their terms are semantically related. The semantic simi-
larity between two terms is inferred by an analysis of their co-occurrence patterns: terms
that co-occur often in the same documents are considered as related. This statistical co-
occurrence information is extracted by means of a singular value decomposition of the term
by document matrix, in the way described in Section 3. We show how this step can be
performed implicitly in any kernel-induced feature space, and how it amounts to a ‘kernel
adaptation’ or ‘semantic kernel learning’ step. Once we have fixed the dimension of the new
feature space, its computation is equivalent to solving a convex optimization problem of
eigenvalue decomposition, so it has just one global maximum that can be found efficiently.
Since eigenvalue decomposition can become expensive for very large datasets we develop
an approximation technique based on the Gram-Schmidt orthogonalisation procedure. In
practice this method can actually perform better than the LSI method.

We provide experimental results with text and non-text data showing that the tech-
niques can deliver significant improvements on some datasets, and certainly never reduce
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performance. Then we discuss their advantages, limitations, and their relationships with
other methods.

2. Kernel methods for text

Kernel methods are a new approach to solving machine learning problems. By developing
algorithms that only make use of inner products between images of different inputs in a
feature space, their application becomes possible to very rich feature spaces provided the
inner products can be computed. In this way they avoid the need to explicitly compute
the feature vector for a given input. One of the key advantages of this approach is its
modularity: the decoupling of algorithm design and statistical analysis from the problem
of creating appropriate function/feature spaces for a particular application. Furthermore,
the design of kernels themselves can be performed in a modular fashion: simple rules exist
to combine or adapt basic kernels in order to construct more complex ones, in a way that
guarantees that the kernel corresponds to an inner product in some feature space. The main
result of this paper can also be regarded as one such kernel adaptation procedure.

Though the idea of using a kernel defined feature space is not new (Aizerman et al.,
1964), it is only recently that its full potential has begun to be realised. The first problem
to be considered was classification of labelled examples in the so-called support vector
machine (Boser et al., 1992; Cristianini and Shawe-Taylor, 2000), with the corresponding
statistical learning analysis described in Shawe-Taylor et al. (1998). However, this turned
out to be only the beginning of the development of a portfolio of algorithms for clustering
(Schölkopf et al., 1998) using principal components analysis (PCA) in the feature space,
regression (Smola and Schölkopf, 1998), novelty detection (Schölkopf et al., 2001), and
ordinal learning (Herbrich et al., 2000). At the same time links have been made between this
statistical learning approach, the Bayesian approach known as Gaussian Processes (Opper
and Winther, 2000), and the more classical Krieging known as ridge regression (Saunders
et al., 1998), hence for the first time providing a direct link between these very distinct
paradigms.

In view of these developments it is clear that defining an appropriate kernel function
allows one to use a range of different algorithms to analyse the data concerned potentially
answering many practical prediction problems. For a particular application choosing a
kernel corresponds to implicitly choosing a feature space since the kernel function is defined
by

k(x, z) = 〈φ(x), φ(z)〉, (1)

for the feature map φ. Given a training set S = {x1, x2, . . . , xm}, the information available
to kernel based algorithms is contained entirely in the matrix of inner products

G = K = (k(xi , x j ))
m
i, j=1,

known as the Gram or kernel matrix. This matrix represents a sort of ‘bottleneck’ for the
information that can be exploited: by operating on the matrix, one can in fact ‘virtually’
recode the data in a more suitable manner.
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The solutions sought are linear functions in the feature space

f (x) = w′φ(x),

for some weight vector w, where ′ denotes the transpose of a vector or matrix. The kernel
trick can be applied whenever the weight vector can be expressed as a linear combination
of the training points, w = ∑m

i=1 αiφ(xi ), implying that we can express f as follows

f (x) =
m∑

i=1

αi k(xi , x).

Given an explicit feature map φ we can use Eq. (1) to compute the corresponding kernel.
Often, however, methods are sought to provide directly the value of the kernel without
explicitly computing φ. We will show how many of the standard information retrieval
feature spaces give rise to a particularly natural set of kernels.

Perhaps the best known method of this type is referred to as the polynomial kernel. Given
a kernel k the polynomial construction creates a kernel k̂ by applying a polynomial with
positive coefficients to k, for example consider

k̂(x, z) = (k(x, z) + D)p,

for fixed values of D and integer p. Suppose the feature space of k is F , then the feature
space of k̂ is indexed by t-tuples of features from F , for t = 0, 1, . . . , p. Hence, through a
relatively small additional computational cost (each time an inner product is computed one
more addition and exponentiation is required) the algorithms are being applied in a feature
space of vastly expanded expressive power. As an even more extreme example consider the
Gaussian kernel k̃ that transforms the kernel k as follows:

k̃(x, z) = exp

(
k(x, x) + k(z, z) − 2k(x, z)

σ 2

)
,

whose feature space has infinitely many dimensions.

3. Vector space representations

Given a document, it is possible to associate with it a bag of terms (or bag of words) by
simply considering the number of occurrences of all the terms it contains. Typically words
are “stemmed” meaning that the inflection information contained in the last few letters is
removed.

A bag of words has its natural representation as a vector in the following way. The num-
ber of dimensions is the same as the number of different terms in the corpus, each entry of
the vector is indexed by a specific term, and the components of the vector are formed by
integer numbers representing the frequency of the term in the given document. Typically
such a vector is then mapped into some other space, where the word frequency information
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is merged with other information (e.g. word importance, where uninformative words are
given low or no weight).

In this way a document is represented by a (column) vector d in which each entry records
how many times a particular word stem is used in the document. Typically d can have
tens of thousands of entries, often more than the number of documents. Furthermore, for a
particular document the representation is typically extremely sparse, having only relatively
few non-zero entries.

In the basic vector-space model (BVSM), a document is represented by a vertical vector
d indexed by all the elements of the dictionary, and a corpus by a matrix D, whose columns
are indexed by the documents and whose rows are indexed by the terms, D = [d1, . . . , dm].
We also call the data matrix D the “term by document” matrix. We define the “document
by document” matrix to be G = D′ D and the “term by term” matrix to be T = DD′.

If we consider the feature space defined by the basic vector-space model, the correspond-
ing kernel is given by the inner product between the feature vectors

K (d1, d2) = 〈d1, d2〉
. = d ′

1d2.

In this case the Gram matrix is just the document by document matrix. More generally, we
can consider transformations of the document vectors by some mapping φ. The simplest
case involves linear transformations of the type φ(d) = Pd, where P is any appropriately
shaped matrix. In this case the kernels have the form

K (d1, d2) = d ′
1 P ′ Pd2.

We will call all such representations vector space models (VSMs). The Gram matrix is
in this case given by D′ P ′ P D that is by definition symmetric and positive definite. The
class of models obtained by varying the matrix P is a very natural one, corresponding
as it does to different linear mappings of the standard vector space model, hence giving
different scalings and projections. Note that Jiang and Littman (2000) use this framework
to present a collection of different methods, although without viewing them as kernels.
Throughout the rest of the paper we will use P to refer to the matrix defining the VSM. We
will describe a number of different models in each case showing how an appropriate choice
of P realises it as VSM.

3.1. Basic vector space model

The basic vector space model (BVSM) was introduced in 1975 by Salton et al. (1975) (and
used as a kernel by Joachims (1998)) and uses the vector representation with no further
mapping. In other words the VSM matrix P = I in this case. The performance of retrieval
systems based on such a simple representation is surprisingly good. Since the representation
of each document as a vector is very sparse, special techniques can be deployed to facilitate
the storage and the computation of dot products between such vectors.

A common map P is obtained by considering the importance of each term in a given
corpus. The VSM matrix is hence a diagonal, whose entries P(i, i) are the weight of the
term i . Several methods have been proposed, and it is known that this has a strong influence
on generalisation (Leopold et al., 2002). Often P(i, i) is a function of the inverse document
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frequency idfi = m
d(term)

, that is the total number of documents in the corpus divided by the
number of documents that contain the given term. So if for example a word appears in each
document, it would not be regarded as a very informative one. Its distance from the uniform
distribution is a good estimation of its importance, but better methods can be obtained by
studying the typical term distributions within documents and corpora. The simplest method
for doing this is just given by P(i, i) = log(idfi ). Other measures can be obtained from
information theoretic quantities, or from empirical models of term frequency. Since these
measures do not use label information, they could also be estimated from an external, larger
unlabelled corpus, that provides the background knowledge to the system.

As described in the previous section as soon as we have defined a kernel we can apply
the polynomial or Gaussian construction to increase its expressive power. Joachims (1998)
and Dumais et al. (1998) have applied this technique to the basic vector space model for
a classification task with impressive results. In particular, the use of polynomial kernels
can be seen as including features for each tuple of words up to the degree of the chosen
polynomial.

One of the problems with this representation is that it treats terms as uncorrelated, as-
signing them orthogonal directions in the feature space. This means that it can only cluster
documents that share many terms. But in reality words are correlated, and sometimes even
synonymous, so that documents with very few common terms can potentially be on closely
related topics. Such similarities cannot be detected by the BVSM. This raises the ques-
tion of how to incorporate information about semantics into the feature map, so as to link
documents that share related terms?

One idea would be to perform a kind of document expansion, adding to the expanded
version all synonymous (or closely related) words to the existing terms. Another, somehow
similar, method would be to replace terms by concepts. This information could potentially be
gleaned from external knowledge about correlations, for example from a semantic network.
There are, however, other ways to address this problem. It is also possible to use statistical
information about term-term correlations derived from the corpus itself, or from an external
reference corpus. This approach forms the basis of latent semantic indexing.

In the next subsections we will look at two different methods, in each case showing
how they can be implemented directly through the kernel matrix, without the need to work
explicitly in the feature space. This will allow them to be combined with other kernel
techniques such as the polynomial and Gaussian constructions described above.

3.2. Generalised vector space model

An early attempt to overcome the limitations of BVSMs was proposed by Wong et al. (1985)
under the name of generalised VSM, or GVSM. A document is characterised by its relation
to other documents in the corpus as measured by the BVSM. This method aims at capturing
some term-term correlations by looking at co-occurrence information: two terms become
semantically related if they co-occur often in the same documents. This has the effect that
two documents can be seen as similar even if they do not share any terms. The GVSM
technique can provide one such metric, and it is easy to see that it also constitutes a kernel
function.
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Given the term by document data matrix D, the GVSM kernel is given by

K (d1, d2) = (D′d1)(D′d2) = d ′
1 DD′d2.

The matrix DD′ is the term by term matrix and has a nonzero i j entry if and only if there
is a document in the corpus containing both the i-th and the j-th terms. So two terms co-
occurring in a document are considered related. The new metric takes this co-occurrence
information into account.

The documents are mapped to a feature space indexed by the documents in the corpus,
as each document is represented by its relation to the other documents in the corpus. For
this reason it is also known as a dual space method (Sheridan and Ballerini, 1996). In the
common case when there are less documents than terms, the method will act as a bottle-neck
mapping forcing a dimensionality reduction. For the GVSM the VSM matrix P has been
chosen to be D′ the document by term matrix.

Once again the method can be combined with the polynomial and Gaussian kernel con-
struction techniques. For example the degree p polynomial kernel would have features for
each (≤p)-tuple of documents with a non-zero feature for a document that shares terms
with each document in the tuple. To our knowledge this combination has not previously
been considered with either the polynomial or the Gaussian construction.

3.3. Semantic smoothing for vector space models

Perhaps a more natural method of incorporating semantic information is by directly using
an external source, like a semantic network. In this section we briefly describe one such
approach. Siolas and d’Alché-Buc (2000) used a semantic network (Word-net (Miller et
al., 1993)) as a way to obtain term-similarity information. Such a network encodes for each
word of a dictionary its relation with the other words in a hierarchical fashion (e.g. synonym,
hypernym, etc.). For example both the word ‘husband’ and ‘wife’ are special cases of their
hypernym ‘spouse’. In this way, the distance between two terms in the hierarchical tree
provided by Wordnet gives an estimation of their semantic proximity, and can be used to
modify the metric of the vector space when the documents are mapped by the bag-of-words
approach.

Siolas and d’Alché-Buc (2000) have included this knowledge into the kernel by handcraft-
ing the entries in the square VSM matrix P . The entries Pi j = Pji expresses the semantic
proximity between the terms i and j . The semantic proximity is defined as the inverse of
their topological distance in the graph, that is the length of the shortest path connecting
them (but some cases deserve special attention). The modified metric then gives rise to the
following kernel

k(d1, d2) = d ′
1 P ′ Pd2 = d ′

1 P2d2

or to the following distance

‖Pd1 − Pd2‖2 = ‖P(d1 − d2)‖2

= (d1 − d2)
′ P2(d1 − d2).
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Siolas and d’Alché-Buc used this distance in order to apply the Gaussian kernel construction
described above, though a polynomial construction could equally well be applied to the
kernel.

Siolas and d’Alché-Buc used a term-term similarity matrix to incorporate semantic in-
formation resulting in a square matrix P . It would also be possible to use a concept-term
relation matrix in which the rows would be indexed by concepts rather than terms. For
example one might consider both ‘husband’ and ‘wife’ examples of the concept ‘spouse’.
The matrix P would in this case no longer be square symmetric. Notice that GVSMs can
be regarded as a special case of this, when the concepts correspond to the documents in the
corpus, that is a term belongs to the i-th ‘concept’ if it occurs in document di .

4. Latent semantic kernels

Latent semantic indexing (LSI) (Deerwester et al., 1990) is a technique to incorporate
semantic information in the measure of similarity between two documents. We will use it
to construct kernel functions. Conceptually, LSI measures semantic information through
co-occurrence analysis in the corpus. The technique used to extract the information relies
on a singular value decomposition (SVD) of the term by document matrix. The document
feature vectors are projected into the subspace spanned by the first k singular vectors
of the feature space. Hence, the dimension of the feature space is reduced to k and we
can control this dimension by varying k. We can define a kernel for this feature space
through a particular choice of the VSM matrix P , and we will see that P can be computed
directly from the original kernel matrix without direct computation of the SVD in the feature
space.

In order to derive a suitable matrix P first consider the term-document matrix D and its
SVD decomposition

D = U	V ′

where 	 is a diagonal matrix with the same dimensions as D, and U and V are orthogonal
(i.e. U ′U = I ). The columns of U are the singular vectors of the feature space in order
of decreasing singular value. Hence, the projection operator onto the first k dimensions is
given by P = U ′

k = IkU ′, where Ik is the identity matrix with only the first k diagonal
elements nonzero and Uk the matrix consisting of the first k columns of U . The new kernel
can now be expressed as

k(d1, d2) = (IkU ′d1)
′(IkU ′d2)

= d ′
1U IkU ′d2 = d ′

1 P ′ Pd2.

The motivation for this particular mapping is that it identifies highly correlated dimensions:
i.e. terms that co-occur very often in the same documents of the corpus are merged into a
single dimension of the new space. This creates a new similarity metric based on context
information. In the case of LSI it is also possible to isometrically re-embed the subspace back
into the original feature space by defining P̂ as the square symmetric (UkU ′)′ = (U IkU ′)′.
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This gives rise to the same kernel, since

k(d1, d2) = (UU ′
kd1)

′(UU ′
kd2)

= d ′
1UkU ′UU ′

kd2 = d ′
1 P ′ Pd2.

We can then view P̂ as a term-term similarity matrix making LSI a special case of the
semantic smoothing described in Solias and d’Alché-Buc (2000). While they need to ex-
plicitly work out all the entries of the term-by-term similarity matrix with the help of a
semantic network, however, we can infer the semantic similarities directly from the corpus,
using co-occurrence analysis.

What is more interesting for kernel methods is that the same mapping, instead of acting
on term-term matrices, can be obtained implicitly by working with the smaller document-
document Gram matrix. The original term by document matrix D gives rise to the kernel
matrix

K = D′ D,

since the feature vector for document j is the j-th column of D. The SVD decomposition
is related to the eigenvalue decomposition of K as follows

K = D′ D = V 	U ′U	V ′ = V 	2V ′ = V 
V ′

so that the i-th column of V is the eigenvector of K , with corresponding eigenvalue 
i i =
λi = σ 2

i . The feature space created by choosing the first k singular values in the LSI
approach corresponds to mapping a feature vector d to the vector U IkU ′d and gives rise to
the following kernel matrix

K̂ = D′U IkU ′U IkU ′ D
= V 	U

′
U IkU ′U	V

′

= V 	 Ik	V T = V 
k V T

where 
k is the matrix 
 with diagonal entries beyond the k-th set to zero. Hence, the new
kernel matrix can be obtained directly from K by applying an eigenvalue decomposition of
K and remultiplying the component matrices having set all but the first k eigenvalues to zero.
Hence, we can obtain the kernel corresponding to the LSI feature space without actually
ever computing the features. The relations of this computation to kernel PCA (Schölkopf
et al., 1999) are immediate. By a similar analysis it is possible to verify that we can also
evaluate the new kernel on novel inputs again without reference to the explicit feature space.
In order to evaluate the learned functions on novel examples, we must show how to evaluate
the new kernel k̂ between a new input d and a training example, k̂(di,d). The function we
wish to evaluate will have the form

f (d) =
m∑

i=1

αi k̂(di,d) =
m∑

i=1

αi (UU ′
kdi )

′(UU ′
kd)

=
m∑

i=1

αi ((UU ′
k D)′(UU ′

kd))i
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=
m∑

i=1

αi (V 	U ′UkU ′
kd)i

=
m∑

i=1

αi (V 	kU ′
kd)i = α′V 	kU ′

kd

The expression still, however, involves the feature vector d which we would like to avoid
evaluating explicitly. Consider the vector

t = D′d = V 	U ′d

of inner products between the new feature vector and the training examples in the original
space. These inner products can be evaluated using the original kernel. But now we have

Ik V ′t = Ik	U ′d = 	kU ′d = 	kU ′
kd,

showing that we can evaluate f (d) as follows

f (d) = α′V 	kU ′
kd = α′V Ik V ′t.

Hence to evaluate f on a new example, we first create a vector of the inner products in
the original feature space and then take its inner product with the precomputed row vector
α′V Ik V ′. None of this computation involves working directly in the feature space.

The combination of the LSK technique with the polynomial or Gaussian construction
opens up the possibility of performing LSI in very high dimensional feature spaces, for
example indexed by tuples of terms. Experiments applying this approach are reported in
the experimental section of this paper. If we think of the polynomial mapping as taking
conjunctions of terms, we can view the LSK step as a soft disjunction, since the projection
links several different conjunctions into a single concept. Hence, the combination of the
polynomial mapping followed by an LSK step produces a function with a form reminiscent
of a disjunctive normal form.

Alternatively one could perform the LSK step before the polynomial mapping (by just
applying the polynomial mapping to the entries of the Gram matrix obtained after the LSK
step), obtaining a space indexed by tuples of concepts. Here the function obtained will be
reminiscent of a conjunctive normal form. We applied this approach to the Ionosphere data
but obtained no improvement in performance. We conjecture that the results obtained will
depend strongly on the fit of the style of function with the particular data.

The main drawback of all such approaches is the computational complexity of performing
an eigenvalue decomposition on the kernel matrix. Although the matrix is smaller than the
term by document matrix it is usually no longer sparse. This makes it difficult to process
training sets much larger than a few thousand examples. We will present in the next section
techniques that get round this problem by evaluating an approximation of the LSK approach.

5. Algorithmic techniques

All the experiments were performed using the eigenvalue decomposition routine provided
with numerical recipes in C (Press, 1992).
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The complete eigen-decomposition of the Kernel matrix is an expensive step, and where
possible one should try to avoid it when working with real world data. More efficient
methods can be developed to obtain or approximate the LSK solution.

We can view the LSK technique as one method of obtaining a low rank approxi-
mation of the kernel matrix. Indeed the projection onto the first k eigenvalues is
the rank k approximation which minimises the norm of the resulting error matrix. But
projection onto the eigensubspaces is just one method of obtaining a low-rank approxi-
mation.

We have also developed an approximation strategy, based on the Gram-Schmidt de-
composition. A similar approach to unsupervised learning is described by Smola et al.
(1999).

The projection is built up as the span of a subset of (the projections of) a set of k
training examples. These are selected by performing a Gram-Schmidt orthogonalisation of
the training vectors in the feature space. Hence, once a vector is selected the remaining
training points are transformed to become orthogonal to it. The next vector selected is the
one with the largest residual norm. The whole transformation is performed in the feature
space using the kernel mapping to represent the vectors obtained. We refer to this method
as the GSK algorithm. Table 1 gives complete pseudo-code for extracting the features in
the kernel defined feature space. As with the LSK method it is parametrised by the number
of dimensions T selected.

Table 1. The GSK algorithm.

Given a kernel k, training set d1, . . . , dm and number T :

for i = 1 to m do

norm2[i] = k(di , di );

for j = 1 to T do

i j = argmaxi (norm2[i]);

index[ j] = i j ;

size[ j] = √
norm2[i j ];

for i = 1 to m do

feat[i, j] = (k(di , di j ) − ∑ j−1
t=1 feat[i, t] ∗ feat[i j , t])/size[ j];

norm2[i] = norm2[i] − feat(i, j) ∗ feat(i, j);

end;

end;

return feat[i, j] as the j-th feature of input i ;

To classify a new example x :

for j = 1 to T do

newfeat[ j] = (k(d, di j ) − ∑ j−1
t=1 newfeat[t] ∗ feat[i j , t])/size[ j];

end;

return newfeat[ j] as the j-th feature of the example x ;



138 CRISTIANINI ET AL.

5.1. Implicit dimensionality reduction

An interesting solution to the problem of approximating the Latent Semantic solution is
possible in the case in which we are not directly interested in the low-rank matrix, unlike
in the information retrieval case, but we only plan to use it as a kernel in conjunction with
an optimization problem of the type:

minimize W (α) = c + qα + 1

2
αT Hα

where H is the Hessian, obtained by pre- and post-multiplying the Gram matrix by the
diagonal matrix containing the {+1, −1} labels,

H = Y K Y, where Y = diag(yi ).

Note that H and K have the same eigenvalues since if K x = λx , then HY x = λY x . It is
possible to easily (and cheaply) modify the Gram matrix so as to obtain nearly the same
solution that one would obtain by using a (much more expensive) low rank approximation.

The minimum of this error function occurs at the point α∗ which satisfies q + Hα∗ = 0. If
the matrix H is replaced by H +λI then the minimum moves to a new point α̃ which satisfies
q + H α̃ + λα̃ = 0. Let us consider the expansion of H in its eigenbasis: Hu j = µ j u j and
the expansions of α∗ and α̃ in the same basis:

α∗ =
∑

α∗
i ui α̃ =

∑
α̃i ui .

Substituting into the above formulae and equating coefficients of the i-th eigenvalue gives

α∗
i µi = α̃i (µi + λ) implying that α̃i = µi

µi + λ
α∗

i .

The fraction in the above equation is a squashing function, approaching zero for values of
µi � λ and approaching 1 for µi � λ. In the first case α̃i ≈ 0, while in the second case
α̃i ≈ α∗

i . The overall effect of this map, if the parameter λ is chosen carefully in a region of
the spectrum where the eigenvalues decrease rapidly, is to effectively project the solution
onto the space spanned by the eigenvectors of the larger eigenvalues.

From an algorithmic point of view this is much more efficient than explicitly performing
the low-rank approximation by computing the eigenvectors.

This derivation not only provides a cheap approximation algorithm for the latent se-
mantic kernel. It also highlights an interesting connection between this algorithm and the
2-norm soft margin algorithm for noise tolerance, that also can be obtained by adding a
diagonal to the kernel matrix (Shawe-Taylor and Cristianini, 2000). But note that there are
several approximations in this view since for example the SVM solution is a constrained
optimisation, where the αi ’s are constrained to be positive. In this case the effect may be
very different if the support vectors are nearly orthogonal to the eigenvectors corresponding
to large eigenvalues. The fact that the procedure is distinct from a standard soft margin
approach is borne out in the experiments that are described in the next section.
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6. Experimental results

We empirically tested the proposed methods both on text and on non-text data, in order
to demonstrate the general applicability of the method, and to test its effectiveness under
different conditions. The results were generally positive, but in some cases the improve-
ments are not significant or not worth the additional computation. In other cases there is a
significant advantage in using the latent semantic or Gram-Schmidt kernels, and certainly
their use never hurts performance.

6.1. Experiments on text data

This section describes a series of systematic experiments performed on text data. We selected
two text collections, namely Reuters and Medline that are described below.

6.1.1. Datasets

Reuters21578. We conducted the experiments on a set of documents containing stories
from Reuters news agency, namely the Reuters data-set. We used Reuters-21578, the newer
version of the corpus. It was compiled by David Lewis in 1987 and is publicly available at

http://www.research.att.com/lewis.

To obtain a training set and test set there exists different splits of the corpus. We used
the Modified Apte (“ModeApte”) split. The “ModeApte” split comprises 9603 training
and 3299 test documents. A Reuters category can contain as few as 1 or as many as 2877
documents in the training set. Similarly a test set category can have as few as 1 or as many
as 1066 relevant documents.

Medline1033. The Medline1033 is the second data-set which was used for experiments.
This dataset comprises of 1033 medical documents and 30 queries obtained from National
library of medicine. We focused on query23 and query20. Each of these two queries contain
39 relevant documents. We selected randomly 90% of the data for training the classifier and
10% for evaluation, while always having 24 relevant documents in the training set and 15
relevant documents in the test set. We performed 100 random splits of this data.

6.1.2. Experiments. The Reuters documents were preprocessed. We removed the punc-
tuation and the words occurring in the stop list and also applied Porter stemmer to the
words. We weighted the terms according to a variant of the tf idf scheme. It is given by
log(1 + tf ) ∗ log(m/df ), here tf represents term frequency, df is used for the document
frequency and m is the total number of documents. The documents have unit length in the
feature space.

We preprocessed the Medline documents by removing stop words and punctuation and
weighted the words according to the variant of tfidf described in the preceding paragraph. We
normalised the documents so that no bias can occur because of the length of the documents.
For evaluation we used the F1 performance measure. It is given by 2pr/(p + r), where p
is the precision and r is the recall.
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The first set of experiment was conducted on a subset of 3000 documents of Reuters21578
data set. We selected randomly 2000 documents for training and the remaining 1000
documents were used as a test set. We focused on the top 5 Reuters categories (earn,
acq, money-fx, grain, crude). We trained a binary classifier for each category and evaluated
its performance on new documents. We repeated this process 10 times for each category.
We used an SVM with linear kernel for the baseline experiments. The parameter C that
controls the trade off between error and maximisation of margin was tuned by conducting
preliminary experiments. We chose the optimal value by conducting experiments on ten
splits of one category. We ran an SVM not only in the reduced feature space but also in a
feature space that has full dimension. The value of C that showed the best results in the full
space was selected and used for all further experiments. For the Medline1033 text corpus
we selected the value of C by conducting experiments on one split of the data. We ran
an SVM in a feature space that has full dimension. The optimal value of C that showed
best results was selected. Note that we did not use that split for further experiments. This
choice does not seem perfect but on the basis of our experimental observation on Reuters,
we conclude that this method gives an optimal value of C .

The results of our experiments on Reuters are shown in figures 1 through 5. Note that
these results are averaged over 10 runs of the algorithm. We started with a small dimensional

Figure 1. Generalisation performance of SVM with GSK, LSK and linear kernel for earn.
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Figure 2. Generalisation performance of SVM with GSK, LSK, and linear kernel for acq.

feature space. We increased the dimensionality of the feature space in intervals by extracting
more features.

These figures demonstrate that the performance of the LSK method is comparable to the
baseline method. The generalisation performance of an SVM classifier varies by varying the
dimensionality of the semantic space. By increasing the value of k, F1 numbers rise reaching
a maximum and then falls to a number equivalent to the baseline method. However this
maximum is not substantially different from the baseline method. In other words sometimes
we obtain only a modest gain by incorporating more information into a kernel matrix.

Figures 6 and 7 illustrate the results of experiments conducted on the two Medline1033
queries. These results are averaged over 100 random runs of the algorithm. For these
experiments we start with a small number of dimensions. The dimensionality was increased
in intervals by extracting more features. The results for query23 are very encouraging
showing that the LSK has a potential to show a substantial improvement over the baseline
method. Thus the results (Reuters and Medline1033) show that in some cases there can be
improvements in performance, while for others there can be no significant improvements.

Our results on Reuters and Medline1033 datasets demonstrates that GSK is a very effec-
tive approximation strategy for LSK. In most of the cases the results are approximately the
same as LSK. However it is worth noting that in some cases such as figure 6, GSK may
show substantial improvement not only over the baseline method but also over LSK.
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Figure 3. Generalisation performance of SVM with GSK, LSK and linear kernel for money-fx.

Hence the results demonstrate that GSK is a good approximation strategy for LSK. It
can improve the generalisation performance over LSK as is evident from the results on the
Medline data. It can extract informative features that can be very useful for classification.
GSK can achieve a maximum at a high dimension in some situations. This phenomenon may
cause practical limitations for large data sets. We have addressed this issue and developed
a generalised GSK algorithm for text classification.

Furthermore, we conducted another set of experiments to study the behaviour of an SVM
classifier with a semantic kernel and an SVM classifier with a linear kernel in a scenario
where a classifier is learnt using a small training set. We selected randomly 5% of the
training data (9603 documents). We focused on the top 10 categories (earn, 144), (acq, 85),
(money-fx, 29), (grain, 18), (crude, 16), (trade, 28), (interest, 19), (ship, 12), (wheat, 8),
(corn, 6). Note that the number of relevant documents are shown with the name of the
categories. A binary classifier was learnt for each category and was evaluated on the full
test set of (3299) documents. C was tuned on one category.

F1 numbers obtained as a results of these experiments are reported in Table 2. Micro-
averaged F1 numbers are also given. We set the value of k = 100, 200, 300. It is to
be noted that there is gain for some categories, but that there is loss in performance for
others. It is worth noting that an SVM classifier trained with a semantic kernel can perform
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Table 2. F1 numbers for varying dimensions of feature space for a SVM classifier with LSK and SVM classifier
with linear kernel (baseline) for ten Reuters categories.

k

Category 100 200 300 Baseline

Earn 0.962 0.958 0.961 0.959

Acq 0.789 0.855 0.848 0.859

Money-fx 0.62 0.673 0.635 0.6

Grain 0.664 0.661 0.67 0.727

Crude 0.431 0.558 0.576 0.575

Trade 0.568 0.683 0.66 0.657

Interest 0.478 0.497 0.5 0.517

Ship 0.422 0.544 0.565 0.565

Wheat 0.514 0.51 0.556 0.624

Corn 0.194 0.1 0.133 0.133

Micro-avg 0.786 0.815 0.815 0.819

Figure 4. Generalisation performance of SVM with GSK, LSK and linear lkernel for grain.
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Figure 5. Generalisation performance of SVM with GSK, LSK and linear kernel for crude.

approximately the same as the baseline method even with 200 dimensions. These results
demonstrate that the proposed method is capable of performing reasonably well in environ-
ments with very few labelled documents.

6.2. Experiments on non-text data

Now we present the experiments conducted on the non-text Ionosphere data set from the
UCI repository. Ionosphere contains 34 features and 315 points. We measured the gain of
the LSK method by comparing its performance with an SVM with polynomial kernel.

The parameter C was set by conducting preliminary experiments on one split of the
data keeping the dimensionality of the space full. We tried C = 0.01, 0.1, 1, 2, 4, 10. The
optimal value that demonstrated minimum error was chosen. This value was used for all
splits and for the reduced feature space. Note that the split of the data used for tuning the
parameter C was not used for further experiments.

The results are shown in figure 8. These results are averaged over 100 runs. We begin
experiments by setting k to a small value. We increased the dimensionality of the space in
intervals. The results show that test error was greatly reduced when the dimension of the
feature space was reduced. The curves also demonstrate that the classification error of an



LATENT SEMANTIC KERNELS 145

Figure 6. Generalisation performance of SVM with GSK, LSK and linear kernel for query23.

SVM classifier with semantic kernel reaches a minimum. It makes some peaks and valleys
before showing results equivalent to the baseline method. These results demonstrate that the
proposed method is so general that it can be applied to domains other than text. It has a poten-
tial to improve the performance of an SVM classifier by reducing the dimension. However
in some cases it can show no gain and may not be successful in reducing the dimension.

7. A generalised version of GSK algorithm for text classification

In this section we present a generalised version of the GSK algorithm. This algorithm arose
as a result of experiments reported in Section 6. Some other preliminary experiments also
contributed to the development of the algorithm.

The GSK algorithm presented in the previous section extracts features relative to the
documents but irrespective of their relevance to the category. In other words, features are
not computed with respect to the label of a document. Generally the category distribution
is very skewed for text corpora. This establishes a need to bias the feature computation
towards the relevant documents. In other words, if we can introduce some bias in this
feature extraction process, the computed features can be more useful and informative for
text classification.
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Figure 7. Generalisation performance of SVM with GSK, LSK and linear kernel for query20.

The main goal of developing the generalised version of the GSK algorithm is to extract few
but more informative features, so that when fed to a classifier it can show high effectiveness
in a low number of dimensions.

To achieve the goal described in the preceding paragraph we propose the algorithm
shown in figure 9. GSK is an iterative procedure that greedily selects a document at each
iteration and extracts features. At each iteration the criterion for selecting a document is the
maximum residual norm. The generalised version of the GSK algorithm focuses on relevant
documents by placing more weight on the norm of relevant documents.

The algorithm transforms the documents into a new (reduced) feature space by taking a
set of documents. As input an underlying kernel function, number T and bias B are also fed
to the algorithm. The number T specifies the dimension of the reduced feature space, while
B gives the degree to which the feature extraction is biased towards relevant documents.

The algorithm starts by measuring the norm of each document. It concentrates on rele-
vant documents by placing more weight on the norm of these documents. As a next step a
document with a maximum norm is chosen and features are extracted relative to this docu-
ment. This process is repeated T times. Finally the documents are transformed into a new
T dimensional space. The dimension of the new space is much smaller than the original
feature space. Note that when there is enough positive data available for training, equal
weights can be given both to relevant and irrelevant documents.
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Figure 8. Generalisation error for polynomial kernels of degrees 2, 3, 4 on Ionosphere data (averaged over 100
random splits) as a function of the dimension of the feature space.

The generalised version of the GSK algorithm provides a practical solution of the prob-
lem that may occur with the GSK-algorithm. This algorithm may show good generalisation
at high dimension when there is not enough training data. In that scenario the generalised
version of the GSK-algorithm shows similar performance at lower dimensions. The com-
plete pseudo-code of the algorithm is given in figure 9.

8. Experiments with generalised GSK algorithm

We employed the generalised GSK algorithm to transform the Reuters documents into a
new reduced feature space. We evaluated the proposed method by conducting experiments
on the full Reuters data set. We used the ModeApte version and performed experiments on
90 categories that contain at least one relevant document both in the training set and test
set. In order to transform documents into a new space, two free parameters T (dimension of
reduced space) and B (bias) need to be tuned. We analysed the generalistion performance
of an SVM classifier with respect to B by conducting a set of experiments on 3 Reuters
categories. The results of these experiments are shown in Table 3. For this set of experiments
we set the dimensionality of space (T ) to 500 and varied B. The results demonstrate that
the extraction of features in a biased environment can be more informative and useful when



148 CRISTIANINI ET AL.

Figure 9. A generalised version of GSK algorithm.

there is insufficient training data. On the basis of these experiments we selected an optimal
value of B for our next set of experiments. Note that we selected the optimal value of C by
conducting preliminary experiments on one Reuters category.

We set the value of T = 500, 1000. The results of this set of experiments are given in
Table 4. We have given F1 value for 500, and 1000 dimensional space. Micro-averaged
F1 values are also shown in the table. In order to learn a SVM classifier we used SVM light

Joachims (1999) for the experiments described in this section.
These results show that the generalised GSK algorithm can be viewed as a substantial

dimensionality reduction technique. Our observation is that the proposed method shows
results that are comparable to the baseline method at a dimensionality of 500. Note that
for the baseline method we employed an SVM with a linear kernel. It is to be noted that
after 500 dimensionality there is a slow improvement in generalisation performance of the
SVM. The micro-averaged F1 values for an SVM with generalised GSK is 0.822 (at 500
dimensions), whereas the micro-averaged F1 number for an SVM with linear kernel is
0.854. These results show that the performance of the proposed technique is comparable to
the baseline method.

These results show that the generalised GSK algorithm is a practical approximation of
LSK. If the learning algorithm is provided with enough positive training data, there is no
need to bias the feature extraction process. However, when the learning algorithm does
not have enough positive training data, an SVM may only show good performance at high
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Table 3. F1 numbers for acq, money-fx and wheat for different values of B.

B Acq Money-fx Wheat

1.0 0.922 0.569 0.707

1.05 0.913 0.678 0.851

1.1 0.864 0.695 0.855

1.15 0.864 0.723 0.846

1.2 0.864 0.756 0.846

1.4 0.864 0.754 0.844

1.6 0.864 0.751 0.862

1.8 0.864 0.755 0.853

2.0 0.864 0.748 0.846

2.2 0.864 0.752 0.855

2.4 0.864 0.756 0.846

2.6 0.864 0.748 0.846

2.8 0.864 0.752 0.846

3.0 0.864 0.756 0.846

4.0 0.864 0.755 0.864

6.0 0.864 0.752 0.857

10.0 0.864 0.731 0.857

Table 4. F1 numbers for top-ten Reuters categories.

T

Category 500 1000 Baseline

Earn 0.977 0.979 0.982

Acq 0.923 0.934 0.948

Money-fx 0.755 0.754 0.775

Grain 0.894 0.902 0.93

Crude 0.872 0.883 0.880

Trade 0.733 0.763 0.761

Interest 0.627 0.654 0.691

Ship 0.743 0.747 0.797

Wheat 0.864 0.851 0.87

Corn 0.857 0.869 0.895

Micro-avg (10) 0.903 0.909 0.919

Micro-avg (90) 0.822 0.836 0.854
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dimensionality leading to practical limitations. However the introduction of bias towards
relevant documents will overcome this problem, hence making it a technique that can be
applied to large data sets.

9. Conclusion

The paper has studied the problem of introducing semantic information into a kernel based
learning method. The technique was inspired by an approach known as latent semantic
indexing borrowed from information retrieval. LSI projects the data into a subspace deter-
mined by choosing the first singular vectors of a singular value decomposition. We have
shown that we can obtain the same inner products as those derived from this projection by
performing an equivalent projection onto the first eigenvectors of the kernel matrix. Hence,
it is possible to apply the same technique to any kernel defined feature space whatever its
original dimensionality. We refer to the derived kernel as the latent semantic kernel (LSK).

We have experimentally demonstrated the efficacy of the approach on both text and
non-text data. For some datasets substantial improvements in performance were obtained
using the method, while for others little or no effect was observed. As the eigenvalue
decomposition of a matrix is relatively expensive to compute, we have also considered
an iterative approximation method that is equivalent to projecting onto the first dimension
derived from a Gram-Schmidt othogonalisation of the data. Again we can perform this
projection efficiently in any kernel defined feature space and experiments show that for some
datasets the so-called Gram-Schmidt kernel (GSK) is more effective than the LSK method.

Despite this success, for large imbalanced datasets such as those encountered in text
classification tasks the number of dimensions required to obtain good performance grows
quite large before relevant features are drawn from the small number of positive documents.
This problem is addressed by biasing the GSK feature selection procedure in favour of
positive documents hence greatly reducing the number of dimensions required to create an
effective feature space.

The methods described in the paper all have a similar flavour and have all demonstrated
impressive performance on some datasets. The question of what it is about a dataset that
makes the different semantic focusing methods effective is not fully understood and remains
the subject of ongoing research.
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