
MVA ”Kernel methods in machine learning”
Homework 2

Julien Mairal and Jean-Philippe Vert

Upload your answers (in PDF) to:
http://goo.gl/cXHXhw

before February 8th, 2017, 1pm (Paris time).

Exercice 1. Dual coordinate ascent algorithms for SVMs
1. We recall the primal formulation of SVMs seen in the class (slide 142).

min
f∈H

1

n

n∑
i=1

max(0, 1− yif(xi)) + λ‖f‖2H,

and its dual formulation (slide 152)

max
α∈Rn

2α>y −α>Kα such that 0 ≤ yiαi ≤
1

2λn
, for all i.

The coordinate ascent method consists of iteratively optimizing with respect
to one variable, while fixing the other ones. Assuming that you want to
maximize the dual by following this approach. Find (and justify) the update
rule for αj.
2. Consider now the primal formulation of SVMs with intercept

min
f∈H,b∈R

1

n

n∑
i=1

max(0, 1− yi(f(xi) + b)) + λ‖f‖2H,

Can we still apply the representer theorem? Why? Derive the corresponding
dual formulation by using Lagrangian duality. Can we apply the coordinate
ascent method to this dual? If yes, what are the update rules?
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3. Consider a coordinate ascent method to this dual that consists of updating
two variables (αi, αj) at a time (while fixing the n−2 other variables). What
are the update rules for these two variables?

Exercice 2. Kernel mean embedding
Let us consider a Borel probability measure P of some random variable X
on a compact set X . Let K : X × X → R be a continuous, bounded, p.d.
kernel and H be its RKHS. The kernel mean embedding of P is defined as
the function

µ(P ) : y → EX∼P [k(X, y)].

1. Explain why µ(P ) is in H.
2. Show that if P and Q are two Borel probability measures,

µ(P ) = µ(Q) implies {EX∼P [f(X)] = EX∼Q[f(X)] for all f ∈ H} .
Hint: Use the relation ‖f‖H = sup‖g‖H≤1〈f, g〉H for all f in H.
Remark: when H is dense in the space of continuous bounded functions

on X , this relation is sufficient to show that P = Q. Hence, the kernel
mean embedding (single point in the RKHS!) carries all information about
the distribution. We call such kernels “universal”. It is possible to show that
the Gaussian kernel is universal.
3. (Bonus) Consider the empirical distribution

PS =
1

n

n∑
i=1

δxi
,

where S = {x1, . . . , xn} is a finite subset of X and δxi
is a Dirac distribution

centered at xi. Show that

ES [‖µ(P )− µ(PS)‖H] ≤
4
√

EK(X,X)√
n

,

where ES is the expectation by randomizing over the training set (each xi is
a r.v. distributed according to P ).

Hint: You may use the fact that

ES

[
sup
f∈F

∣∣∣∣∣E[f(X)]− 1

n

n∑
i=1

f(Xi)

∣∣∣∣∣
]
≤ 2Radn(F),

where Radn(F) is the Rademacher complexity of the class of functions F .
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