MVA "Kernel methods in machine learning" Homework 1

Julien Mairal and Jean-Philippe Vert

Upload your answers (in PDF) to:
http://goo.gl/xcC4Qy
before January 25, 2017, 1pm (Paris time).

Exercice 1. Kernel examples

Are the following kernels positive definite?
1.

$$
\forall x, y \in \mathbb{R} \quad K_{1}(x, y)=10^{x y}, \quad K_{2}(x, y)=10^{x+y} .
$$

2.

$$
\forall x, y \in[0,1) \quad K_{3}(x, y)=-\log (1-x y) .
$$

3. Let \mathcal{X} be a set and $f, g: \mathcal{X} \rightarrow \mathbb{R}_{+}$two non-negative functions:

$$
\forall x, y \in \mathcal{X} \quad K_{4}(x, y)=\min (f(x) g(y), f(y) g(x))
$$

Exercice 2. Combining kernels

1. For $x, y \in \mathbb{R}$, let

$$
K_{1}(x, y)=(x y+1)^{2} \quad \text { and } \quad K_{2}(x, y)=(x y-1)^{2} .
$$

What is the RKHS of K_{1} ? Of K_{2} ? Of $K_{1}+K_{2}$?
2. Let K_{1} and K_{2} be two positive definite kernels on a set \mathcal{X}, and α, β two positive scalars. Show that $\alpha K_{1}+\beta K_{2}$ is positive definite, and describe its RKHS.

Exercice 3. Uniqueness of the RKHS

Prove that if $K: \mathcal{X} \times \mathcal{X}$ is a positive definite function, then it is the r.k. of a unique RKHS. To prove it, you can consider two possible RKHS \mathcal{H} and \mathcal{H}^{\prime}, and show that (i) they contain the same elements and (ii) their inner products are the same. (Hint: consider the linear space spanned by the functions $K_{x}: t \mapsto K(x, t)$, and use the fact that a linear subspace \mathcal{F} of a Hilbert space \mathcal{H} is dense in \mathcal{H} if and only 0 is the only vector orthgonal to all vectors in \mathcal{F})

